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DEDICATION

To Josh, who taught me to think
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EPIGRAPH

The words of the wise are like goads, and like nails firmly fixed are the collected sayings;

they are given by one Shepherd. My son, beware of anything beyond these.

Of making many books there is no end, and much study is a weariness of the flesh.

Ecclesiastes 12:11-12

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Challenge: Tracking and Sharing Data Analyses . . . . . . . . . . . . 3
1.2 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Data Analysis and Sensemaking . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Computational Notebooks . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Collaborative Visual Analytics . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Narrative and Storytelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Technical Debt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Active Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Exploration and Explanation: A Central Tension in Data Analysis . . . . . . . 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Study 1: Analyzing 1 Million Jupyter Notebooks . . . . . . . . . . . . . . 23

3.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Study 2: Narrative in Academic Notebooks . . . . . . . . . . . . . . . . . 29
3.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Study 3: Interviewing Academic Data Analysts . . . . . . . . . . . . . . . 34

vi



3.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Aiding Communication of Data Analyses through Flexible Organization and
Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Workshops: Identifying Design Opportunities . . . . . . . . . . . . . . . 48

4.2.1 Brainstorming Workshop . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Paper Prototyping Workshop . . . . . . . . . . . . . . . . . . . . . 51

4.3 Janus: History and Hierarchy for Computational Notebooks . . . . . . . 52
4.3.1 History: Cell and Notebook Versions . . . . . . . . . . . . . . . . . 52
4.3.2 Hierarchy: Hiding Cells, Inputs, and Outputs . . . . . . . . . . . 53

4.4 Study 1: Formative Study with Novice Analysts . . . . . . . . . . . . . . 54
4.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.2 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Study 2: Technology Probe with Expert Analysts . . . . . . . . . . . . . . 63
4.5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.8 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 ActiveNotes: Interactive Notes for Clinicians . . . . . . . . . . . . . . . . . . . 74
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Background: Fragmented Medical Records . . . . . . . . . . . . . . . . . 75
5.3 ActiveNotes Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.8 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Technical Interventions . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.2 Social Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.3 Wider Use of Notebooks . . . . . . . . . . . . . . . . . . . . . . . . 94

vii



6.2.4 Beyond Notebooks . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.5 Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.1 Characterizing Data Analysis . . . . . . . . . . . . . . . . . . . . . 96
6.3.2 Redesigning Computational Notebooks . . . . . . . . . . . . . . . 97
6.3.3 Computational Notebooks for Non-Programmers . . . . . . . . . 97
6.3.4 Reading and Reuse of Computational Notebooks . . . . . . . . . 98
6.3.5 Other Barriers to Sharing Data Analyses . . . . . . . . . . . . . . . 99

6.4 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

viii



LIST OF FIGURES

Figure 1.1: Two methods of tracking the process of exploratory data analysis . . 4
Figure 1.2: A computational notebook . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 1.3: Contributions of this dissertation . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.1: Models of the data analysis process . . . . . . . . . . . . . . . . . . . 12
Figure 2.2: Three types of computational notebook . . . . . . . . . . . . . . . . . 15

Figure 3.1: The growth of Jupyter Notebooks on Github . . . . . . . . . . . . . . 23
Figure 3.2: Notebook length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 3.3: Notebook organizational features . . . . . . . . . . . . . . . . . . . . 26

Figure 4.1: The Janus Jupyter Notebook extension . . . . . . . . . . . . . . . . . 53
Figure 4.2: The example notebook comparing housing prices used in Study 1 . . 56
Figure 4.3: Task performance with Janus . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.1: ActiveNotes in use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 5.2: ActiveNotes checkout screen . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 6.1: Example visualization of how one notebook evolved over time . . . 96

ix



LIST OF TABLES

Table 3.1: Length and content of academic computational notebook by genre . . 32

Table 5.1: Shorthand used when placing orders . . . . . . . . . . . . . . . . . . . 82

x



ACKNOWLEDGEMENTS

I owe a great debt to teachers, colleagues, family, and friends. There is not space

here to do their generosity justice but I must make some attempt to thank them, or at

least alert the reader that these pages bear their marks as well as my own.

Jim, thank you for treating me as a junior colleague from the start, for being

fascinated by the people and stories behind research, for your steady confidence in

me, and for teaching me that knotty problems are often simpler after a morning surf.
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ABSTRACT OF THE DISSERTATION

Design and Use of Computational Notebooks

by

Adam Carl Rule

Doctor of Philosophy in Cognitive Science

University of California San Diego, 2018

Professor James D. Hollan, Chair

Individuals and organizations increasingly rely on data analysis to generate in-

sights and make decisions. Yet, small changes in how data are collected, cleaned, or

modeled can lead to vastly different results. If data-driven insights are to be reviewed,

reused, or trusted the process used to generate them must be tracked and communi-

cated in detail. But data analysis is typically an iterative and exploratory process that is

hard to articulate, especially when it involves programming. Computational notebooks

aim to ease tracking and sharing of complex analyses by enabling analysts to write rich

computational narratives combining executable code, interactive visualizations, and ex-

planatory text in a single document. While millions of people use computational note-

xiv



books, we know little about how they use them, or how well they help people track and

share complex analyses.

In this dissertation I present three studies of how people currently use compu-

tational notebooks, demonstrating that few notebooks, even those published alongside

academic papers, have much in the way of narrative. Instead, most notebooks are loose

collections of notes and scripts that even the original analyst struggles to understand.

I then present two systems demonstrating how computational notebooks might be de-

signed to support clearer communication of complex analyses. The first system, Janus,

shows how current notebooks might be modified to aid both ongoing analysis and later

communication by adding interactive hierarchy for selectively showing and hiding por-

tions of the notebook. The second system, ActiveNotes, a prototype clinical note edi-

tor, demonstrates how computational notebooks might support data-driven work even

when programming is not the primary means of interacting with data.

Together, these studies demonstrate that tracking and sharing of complex analyses is

hindered by a tension between exploration and explanation, but that computational notebooks

and other media can reduce this tension by supporting not only the combination of, but also

flexible organization and navigation of analytical steps, explanatory text, and computed results.

xv



1 Introduction

This dissertation explores how people use computational notebooks to perform,

document, and share data-driven work. It finds a tension between exploration

and explanation hinders data analysts from clearly communicating complex anal-

yses, but that computational notebooks can reduce this tension by supporting

flexible navigation and organization of analytical components such as executable

code, computed results, and explanatory text. This dissertation also explores

how computational notebooks might help professionals document and share data-

driven work in domains where general-purpose programming is not the primary

means of interacting with data. Together these investigations help us understand

how computational notebooks and other interactive technologies can help indi-

viduals and organizations think with data.

The cost of collecting, storing, and manipulating data has fallen dramatically

over the past 50 years, enabling data to multiply in nearly every sphere of life [80].

Businesses increasingly rely on data about their customers and products to generate

value [50]. Governments munge data to learn about their constituents and set policy

[57, 69, 70]. Scientists collect and model data to study domains as diverse as engineer-

ing, the life sciences, and arts. Individuals collect data about their physical activity,

spending, and happiness to foster self-awareness [19, 60]. Profits, policy, innovation,

and health all increasingly rely on collecting and analyzing data.
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But those who understand data are in short supply. McKinsey, a consulting firm,

estimates that in 2018 the United States alone will face “a shortage of 140,000 to 190,000

people with analytical expertise and 1.5 million managers and analysts with the skills

to understand and make decisions based on the analysis of big data” [62]. There is an

urgent need to both train new analysts and develop tools and techniques that enable

them to work more effectively.

Data analysis has been described as simply “looking at data to see what it seems

to say” [99], but knowing where and how to look is not as simple as it may seem. In-

sights derived from data are highly dependent on the questions asked and the methods

used to inspect them. Two analysts given the same dataset may draw vastly different

conclusions [40, 79]. Even during analysis, deciding what to do next often requires

extensive knowledge of what one has already done with the data and why [27, 38].

Moreover, the scale of data analyzed today typically requires writing and running nu-

merous small computer programs to collect, clean, and model them. The workings of

each of these programs may be difficult to understand in isolation, much less when they

are combined.

These challenges are compounded by the fact that data analysis is increasingly

collaborative [36, 50], especially in scientific domains. Even if they work in the same of-

fice or field, collaborators may have vastly different skill-sets, terminologies, and goals

for an analysis [25]. Assumptions need to be made explicit and methods explained in

detail if data and the insights derived from them are to be clearly communicated [33].

Those who wish to contribute to open science and publicly share their work face even

greater challenges making their analyses legible not just to a particular group of col-

leagues, but to anyone who might read them. Explaining the exploratory process of

data analysis is rarely a straightforward task.
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1.1 The Challenge: Tracking and Sharing Data Analyses

Data analysts need to keep a detailed record of their analytical steps, reasoning,

and results if others are to review, resume, or build on their work. However, tracking

and sharing data analysis is complicated by the number and diversity of steps involved

[29, 50, 92] as well as the professional judgment guiding their selection and execution

[33]. In the end, most analysts have only incomplete or messy records of their process,

especially when their analysis involves programming.

Consider Figure 1.1 which shows two different methods of tracking data anal-

ysis employed by two different biologists. Figure 1.1(a) shows a partial list of files

in one of the biologist’s computer folders [29]. He had run the same analysis script

over and over again, tweaking the parameters of the script each time and generating

dozens of figures whose similar filenames contain the settings of each run (e.g., “ld2”

and “5000kb”). When resuming the analysis after a break, this analyst had difficulty

recalling which run had produced the most promising results. Figure 1.1(b) shows a

second biologist’s attempts to track her analysis [92]. Since she had to manage data

across multiple websites and applications she chose to track her steps in a Word docu-

ment. Her cryptic notes are a collage of activity: manipulating data from her command

line, referencing notes in another notebook, instructions to copy-paste and rerun a step,

file paths to yet more data, notes on variations of the analysis with different parameters,

and even raw data pasted directly into the Word document itself.

Both methods demonstrate some of the challenge of tracking and sharing data

analysis. Iterative analyses tend to produce multiple similar results that take time and

energy to document and distinguish. Analyses often require multiple steps across mul-

tiple tools, none of which keeps a full record of the process. Manually tracking one’s

steps is laborious and often produces cryptic notes that even the original analyst has a

hard time understanding. In the end neither record is of much use to a collaborator.

3



(a)

(b)

Figure 1.1: Two methods of tracking the process of exploratory data analysis. (a) A par-
tial list of output files for different runs of the same analysis with file names reflecting
the parameters of each run, from [29]. (b) A Word document describing a biologist’s
analytical steps across multiple software tools, from [92].

4



One increasingly popular means of addressing these challenges is to conduct

analyses, at least the growing share involving programming, in computational note-

books (Figure 1.2). These enable analysts to iteratively execute analytical code and in-

terleave it with computed results and explanatory text. Whereas, before, analysts had

to copy code and results from various files into a separate report (Figure 1.1(b)), com-

putational notebooks enable them to write, run, and explain their analyses in a single

document. In place of large collections of similarly named files (Figure 1.1(a)), analysts

can combine all explorations in a single annotated document. Computational note-

books have seen widespread adoption in recent years [28] and been hailed by some as

a replacement to academic papers as the best vehicle for sharing scientific results. [88].

Yet, while millions of people use computational notebooks for a variety of data-driven activities,

we know little about how they actually use them or how well notebooks address the challenge of

tracking and sharing complex data analyses.

Figure 1.2: A computational notebook combining code, visualizations, text.

5



1.2 Thesis

This dissertation explores challenges analysts face tracking and sharing their

data analyses. It focuses on how they currently use computational notebooks to do

so, and how these notebooks might be designed to better support their needs. This dis-

sertation also begins to explore how the paradigm of computational notebooks might

support data-driven work in domains where programming with a general-purpose pro-

gramming language is not the primary means of interacting with data, domains such as

engineering, healthcare, and government. Underlying these investigations is the thesis:

Understanding how the tension between exploring data and explaining process

manifests itself in practice makes it possible to design software that enables ana-

lysts to document and share their work more effectively.

1.3 Contributions

This dissertation has four types of contributions: empirical results, theoretical

perspectives, prototype systems, and an open dataset. Here I summarize these contri-

butions in the order they will be presented in the chapters that follow (Figure 1.3).

CHAPTER 3 presents three studies characterizing the use of computational nar-

rative (i.e., the interleaving of code and visualizations with explanatory text) in com-

putational notebooks. In the first study I analyze over 1 million Jupyter Notebooks

hosted publicly on GitHub, finding that more than a quarter lack even a single word

of explanatory text. Even those notebooks that had explanatory text were mostly loose

collections of notes and scripts without a coherent structure. In a second study I system-

atically code over 200 notebooks supplementing academic publications, finding that

even when these notebooks have explanatory text, only about a third use that text to

discuss analytical reasoning or to interpret results. Even among these academic note-

6



Figure 1.3: Contributions of this dissertation including empirical results, prototype sys-
tems, theoretical perspectives, and an open dataset.

books where we might expect authors to include detailed explanations of their work to

support future research, most authors used explanatory text to simply label the steps of

their analysis. In a third study I interview 15 academic data analysts, finding that this

lack of narrative stems from the tendency for exploratory analyses to produce messy

7



notebooks that are difficult to understand. Cleaning and sharing these notebooks takes

more effort than copying a final figure into an email, which may be all that analysts feel

their collaborators want to see.

Together these findings support a theoretical perspective that a tension between

exploration and explanation makes it difficult to track and share data analyses, re-

gardless of the medium involved. The iterative and messy process of exploring data

is fundamentally at odds with the careful, reflective process of explaining what the

results of those explorations mean. In addition to these empirical findings and theo-

retical perspective, I also released all data from the first study, including over a mil-

lion computational notebooks, as a single dataset for others to download and study

(https://doi.org/10.6075/J0JW8C39).

In CHAPTER 4 I build on these findings by exploring how computational note-

books might be redesigned to encourage clearer communication of complex data anal-

yses, in particular by including more explanatory text and explicit organization. Taking

the point-of-view that notebooks need to provide an immediate benefit to organization

and annotation activities I design and develop Janus, a Jupyter Notebook extension

that enables analysts to add history and hierarchy to their notebooks. Through two

studies, the first a formative study with novice analysts and the second a multi-week

technology probe with expert analysts, I demonstrate that hierarchy in particular en-

ables analysts to flexibly organize and navigate their notebooks in ways that support

both the ongoing analysis and later communication of results. These findings support

the theoretical perspective that flexible organization and navigation of code, visualiza-

tions, and text can help reduce the tension between exploration and explanation by

providing a lightweight and fast way to tailor notebooks to the task at hand.

In CHAPTER 5 I explore how the the paradigm of computational notebooks might

support data-driven work in a domain where general-purpose programming in not the

primary means of interacting with data. With a team of collaborators I helped design
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and test ActiveNotes, a prototype clinical note editor that enables clinicians to place

medication orders while typing free-text notes. This work provides empirical results

about how clinicians might use free-text order entry, and supports the theoretical per-

spective that notebooks mixing free-text and commands written in a domain-specific

language might support data-driven work outside traditional data analysis.

Together these investigations help us understand how computational notebooks

and other interactive media might help individuals and organizations think with data.
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2 Related Work

This thesis builds on prior work characterizing the iterative process of data anal-

ysis and exploring the design of systems for collaborative visual analytics. It also

touches on the accrual of technical debt while analyzing data and the role of nar-

rative and active reading in comprehending analyses. In this chapter I survey

relevant work from each domain and discuss how this dissertation builds on it.

2.1 Data Analysis and Sensemaking

In the introduction to his seminal book Exploratory Data Analysis John Tukey

memorably described data analysis as “looking at data to see what it seems to say” [99].

This definition is vague, which may have been Tukey’s point. Data analysis includes a

variety of activities and tools ranging from tracking virtues in a paper notebook (as Ben

Franklin famously did) to tabulating financial results in Excel. A more precise definition

might exclude whole communities of practice. It might also fail to convey the creative

and exploratory process of data analysis. Tukey in particular stressed that exploratory

analysis and plotting, preferably by hand, should almost always precede more exact

statistical tests because hand-guided exploration can identify interesting trends, check

assumptions, and inform selection of appropriate analytical techniques.

From tracking how millions of people use social media to big science initiatives

collecting petabytes of data, the scale of data analyzed today routinely exceeds what
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can be plotted by hand [63, 80]. Instead, programming and computerized analysis has

become a primary means of interacting with data. Despite this digitization, recent ac-

counts of data analysis echo Tukey’s description of an iterative and imprecise art.

Based on interviews with 35 enterprise data analysts, Kandel et al. characterized

data analysis as an iterative process with five overlapping phases (Discovery, Wran-

gle, Profile, Model, Report) [50]. Guo similarly characterized data analysis as an itera-

tive process with four phases (Preparation, Analysis, Reflection, Dissemination) (Figure

2.1(a)) [29]. Hadley Wickham, core developer of the tidyverse of R packages for data

analysis, prefers a six phase model (Import, Tidy, Transform, Visualize, Model, Com-

municate) (Figure 2.1(b)) [104].

While different in detail, these models are remarkably similar at a high level.

They all cast data analysis as an iterative process where insights generated at a later

stage can cause analysts to jump back to an earlier one. They all bookended the pro-

cess with stages of finding and cleaning data on one end and communicating results

on the other. And they all emphasize that analysts try different versions of the same

analysis, slowly improve their methods over time, and hit numerous“dead ends” be-

fore finding an explanation they feel“fits” the data. In each model data analysis is not a

predetermined science but an exploratory process making sense of data.

Like other forms of sensemaking [81], the process used to collect, explore, and

make sense of data can have a significant impact on the sense made. Small changes to

how data are collected, cleaned, and analyzed can lead to vastly different results. For

example, one highly cited economics paper claimed that countries with a public debt

greater than 90% of GDP average -0.1% annual economic growth [79]. Using slightly

different methods and fixing an error in the original authors’ Excel file, researchers at

another institution placed the figure at 2.2% [40]. This is a difference between recession

and stable growth which had massive implications for policy makers in both the United

States and European Union.
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(a)

(b)

Figure 2.1: Models of the data analysis process by a) Philip Guo and b) Hadley Wick-
ham. Both cast data analysis as an iterative process bookended by acquiring data and
communicating results.

This difference highlights how much data analysis relies on professional judg-

ment, which has consequences for the ways analysts document and share their work.

While observing analysts at the International Monetary Fund, Harper and Sellen found

that the more judgment involved in producing a piece of information, the less suit-

able it was for sharing over asynchronous electronic media [33]. Analysts at the Fund

routinely interpolated missing data or adjusted figures based on their knowledge of

countries’ data collection practices. Without knowing how and why these adjustments

were made, others could easily misinterpret the data and insights drawn from them.

And while in some cases the goal may be to produce generalizable knowledge, more
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often than not the goal of data analysis may simply be to inform an individual seeking

to make a decision [52].

When tracking their work analysts are often simply trying to communicate the

analysis to their present or future selves. Taking the perspective of distributed cognition

[46] — which views cognition as extending beyond the bounds of an individual brain

to include artifacts, other people, and social practices over time — the tools analysts use

to perform data analysis are integral parts of their cognitive process. They are part of a

reflective conversation [84] the analyst has with their data. The challenge is designing

substrates for cognition that work both for analysis in the moment and as a vehicle for

collaboration over time.

As in prior work this dissertation focuses on data analysis where a general-

purpose programming language is used as the primary means of collecting, cleaning,

and modeling data. However, as CHAPTER 5 shows, it also has implications for other

forms of analysis where such programming is not involved. To our current understand-

ing of data analysis this dissertation contributes the theory that a tension between data

exploration and process explanation lies at the heart of data analysis and hinders col-

laborative analysis by making it difficult to track and share complex analyses.

2.2 Computational Notebooks

The amount of exploration and professional judgment involved in data analysis

necessitates clear documentation of analyses if others — or even the original analyst —

are to inspect, replicate, or build on them. Leading work on reproducibility suggests

that at a minimum, analysts should distribute the code used in their analyses [74]. Yet,

analysts themselves may have difficulty reconstructing the exact process used to gener-

ate a result [29]. They often try the same analysis in multiple different ways, producing

large collections of opaquely named and interrelated files as demonstrated in Figure
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1.1(a). Moreover, the analysis may involve combining and reflecting on media from

a variety of digital and paper resources that are not easily shared [92]. Even with all

the code and resources in one place there is the additional challenge of making them

understandable. As the organizers of the Software Carpentry workshops note, “most

researchers are never taught the equivalent of basic lab skills for research computing”

[108]. These include placing explanatory comments at the start of every program file,

making code dependencies explicit, and separating raw from cleaned data. Much of

this organization and annotation is a manual process learned through experience.

One way to address these challenges is to perform data analyses in computa-

tional notebooks. In the tradition of Knuth’s literate programming [54], computational

notebooks enable analysts to mix code with manual annotations in a single document.

While their history can be traced to the JOSS interactive programming language devel-

oped in 1963 [87], and notebooks have been available in proprietary software such as

Mathematica since the 1980s [109], the notebook computing paradigm has seen rapid

adoption only in the past decade thanks to the release of free and open source platforms

such as Jupyter Notebook [53] and RStudio [95]. These have millions of users in fields

as diverse as education, finance, and the sciences [28] (Figure 2.2). This new generation

of notebooks is based on a linear collection of cells, each of which contains rich text or

code that can be executed to compute results or generate visualizations. These cells are

linearly arranged, but can be reorganized, reshuffled, and executed in any order.

The interactive notebook paradigm is spreading beyond data analysis to other

development and visualization environments. ObservableHQ [68] and Iodide [12] both

provide computational notebooks based on Javascript where users can both analyze

data and change the operation and layout of the notebook with code. Distill, an online

academic journal, uses a notebook format to explain complex machine learning research

[2]. Likewise, Codestrates recently demonstrated how the notebook paradigm could be

used to blur the line between development and use of an application [78].
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Figure 2.2: Three types of computational notebook. From left to right: an R Notebook,
Distil Journal Article, and Jupyter Notebook

The notebook paradigm is clearly powerful and addresses a key challenge of

performing data analysis by combining previously distributed code, visualizations, and

text in a single document. This combinatorial aspect of notebooks has been studied in

the field of human-computer interaction over the last decade with research platforms

aiming to make it easier to automatically combine traces of an analysis from multiple

sources. Burrito, for example, instrumented analysts’ computers so that analytical steps

were automatically recorded and could be mixed with manual annotations [30]. PRISM

enabled computational biologists to mix and reflect on paper and digital media in a

hybrid laboratory notebook [92].

But we know very little about how the current generation of computational note-

books are actually being used. There is hope that, in addition to helping analysts man-

age files, computational notebooks will usher in a new era of open and reproducible

analyses where analysts can write clear and compelling computational narratives that

both tell the story of the analysis and can be used to replicate it [88].

This dissertation contributes to our understanding of computational notebooks

by presenting one of the first studies of how data analysts use and share their notebooks
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(though Kery et al. [51] have simultaneously been studying computational notebook

use with complimentary results). Moreover it demonstrates how small changes to how

notebooks are designed can impact how analysts perform and share analyses.

2.3 Collaborative Visual Analytics

A 2005 report by the National Visualization and Analytics Center listed support-

ing collaboration as a grand challenge for visualization research [96]. Shortly thereafter

Heer and Agrawala synthesized dozens of design decisions for systems supporting col-

laborative visual analytics into seven key areas: division and allocation of work; com-

mon ground and awareness; reference and deixis; incentives and engagement; identity,

trust, and reputation; group dynamics; and consensus and decision making [36].

Much attention has been devoted to the second and third areas of common

ground and awareness and reference and deixis. For example, Sense.us, ManyEyes,

and CommentSpace collectively explore how to annotate and comment on shared on-

line visualizations as well as bookmark particular views for sharing and later access

[39, 101, 106]. While informative, all of these systems rely on rich, graphical user inter-

face (GUI) interactions with data and data visualizations. What remains unknown is

how to support collaboration when code is a primary means of interacting with data,

particularly when code and commentary can be interleaved in a single document.

Projects like Google’s Colaboratory [4] and JupyterLab [28] are beginning to ex-

plore this domain by adding real-time collaborative editing, commenting, code-hiding,

and tables of contents to computational notebooks. However as [50] notes, collabora-

tion at the level of scripts is rare and it remains to be seen if features such as code-hiding

and tables of contents will be enough to encourage analysts to share their “messy” and

“throw-away” code. This dissertation explores how to support collaborative analysis

when code rather than GUIs or direct manipulation are used to analyze data.
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2.4 Narrative and Storytelling

Sir Peter Medawar in his Induction and Intuition in Scientific Thought stated that

science “begins as a story about a Possible World — a story which we invent and criti-

cize and modify as we go along, so that it ends by being, as nearly as we can make it, a

story about real life” [64]. The same could be said of data analysis.

One of the key features of computational notebooks is that they enable analysts

to arrange code, visualizations and text in a computational narrative. While computers

are good at producing and processing data, humans are much better at understanding

stories. I am not an expert in narrative, nor can I summarize millennia of innovation

in a few paragraphs. However, here I highlight a few salient aspects of narrative as it

relates to data analysis and visualization.

At its core, a narrative is a series of ordered and connected events. The Oxford

English Dictionary defines narrative as “An account of a series of events, facts, etc.,

given in order and with the establishing of connections between them; a narration, a

story, an account”. As such, a series of disjointed events is not a narrative (e.g., a twitter

newsfeed), nor is a collection of related events that are not in a particular order (e.g.,

an affinity diagram or mood board). Narratives occur in a variety of media including

audio, text, and video, each of which have their own strategies for engaging the au-

dience and moving the story along. While some techniques, such as the “flashback”

can be employed across media, others like split-screen sequences in film, are unique to

particular media [55].

Since the early 2000s, there has been increasing focus on narrative and story-

telling in information visualization. Gershon and Page highlighted the power of nar-

rative to engage and convey information and suggested that information visualization

employ well-established narrative techniques such as continuity editing, filling gaps,

and redundancy [26]. Segel & Heer built on this foundation by developing a design
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space for what they called “narrative visualizations” (visualizations with a set of or-

dered and connected views), and identified seven distinct genres including magazine,

slideshow, and comic-strip [85]. Noting the importance of the order in which data views

are presented, Hullman et. al conducted multiple studies of how people sequence infor-

mation visualization events, finding they tend to prefer a consistent, hierarchical struc-

ture [44, 45]. More recently, Kosara & Mackinlay highlighted the need to use different

storytelling strategies in different situations with different audiences (e.g., self-running

presentations, live presentations, small-group presentations) [55], and Satyanarayan &

Heer demonstrated Ellipsis, a tool to support the authoring of narrative visualizations

for the web [82].

This prior research demonstrates the challenge of communicating exploratory

data analysis, the promise of computational notebooks, and the characteristics of narra-

tive in information visualization. However, as noted in prior research, narrative affor-

dances and strategies differ across media and audience [55]. It remains to be seen what

forms of narrative computational notebooks afford and the distinct scenarios in which

analysts use them. Moreover, tools such as Ellipsis which support the construction of

narratives in interactive information visualizations may not apply when crafting narra-

tive in computational notebooks which need to not only convey insights, but also how

they were generated.

This dissertation contributes an understanding of how narrative is used to com-

municate complex data analyses when interleaved with code and visualizations in a

notebook. In contrast to prior work which has focused on the workflow and tools used

by professional storytellers such as journalists this dissertation focuses on the larger

population of everyday data analysts crafting narratives.
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2.5 Technical Debt

In exploring how analysts document data analyses performed with code, this

dissertation touches on the topic of technical debt. In software engineering, “technical

debt” refers to writing code in ways that save time or energy now but incur a “debt”

of future work to align code with best practices [14]. This can include using simple

but error-prone algorithms in place of more complex but robust ones, or skimping on

documentation. Recent work has moved from calling for the elimination of technical

debt to acknowledging its inevitability and learning to manage it [8, 11]. One way to

identify sources of technical debt is to look for “code smells”, symptoms of bad design

or implementation such as duplicate code, long methods, or missing comments [98].

Fixing the problems identified by code smells can include refactoring, that is

changing the structure of code without changing its function, or writing comments and

documentation [22]. Recent studies of refactoring highlight that programmers refactor

frequently, intersperse refactoring with other program changes, and typically use man-

ual methods to refactor code rather than tools [66]. Likewise studies of commenting

and documentation note that programmers do not write or update documentation as

quickly or completely as they or their managers would like [21, 59] and have explored

ways of automatically generating documentation and comments [63, 89].

These studies provide some guidance for data analysis involving programming,

but there are significant differences between data analysis and software engineering in

goals and process. Data analysts typically write short scripts rather than production-

ready code and can often tolerate more faults in their code than software developers.

Moreover, analysts need to document the analytical process itself, not just the operation

of a finished piece of code. This dissertation adds to our understanding of technical debt

by demonstrating how it accrues in data analysis and is a key barrier to wider sharing

and reuse of computational notebooks.
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2.6 Active Reading

In studying how analysts navigate and read their notebooks this dissertation also

touches on the topic of active reading. In contrast to the linear and often passive process

of reading a novel, active reading is the combination of reading, critical thinking, and

learning used to understand, compare, and ask questions of a text. It is a staple of

knowledge work from students learning from textbooks to researchers keeping up to

date with the latest literature.

Several studies have highlighted the affordances of paper for active reading [11],

even down to micro-behaviors such as how people flip or tuck papers, or use a finger

to bookmark a location [43]. Researchers in human-computer interaction have also de-

veloped a number of systems to replicate the affordances of paper in digital media, and

to go beyond them. XLibris, for example, enables users to freely annotate a document,

but also see clippings of important sections, even providing automatic links to relevant

information when a section of text is circled or highlighted [77]. Papiercraft went fur-

ther to link paper and digital interactions, letting users control digital documents by

annotating physical copies of them [61]. Liquidtext explored active reading with multi-

touch, enabling users to use gestures on a tablet to extract and link sections of text, or

collapse intermediate text to view two disparate sections of a document side by side

[94].

This dissertation extends prior work on active reading by demonstrating how

more flexible means of organizing and navigating computational notebooks can ease

ongoing analysis and enable analysts to quickly re-purpose notebooks for collaboration.
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3 Exploration and Explanation: A

Central Tension in Data Analysis

This chapter presents three studies of how data analysts use computational note-

books to document and share their work. These include an analysis of over 1 mil-

lion notebooks shared online, systematically coding 200 notebooks supplement-

ing academic publications, and interviews with 15 academic data analysts. I find

a tension between exploring data and explaining process hinders analysts from

clearly documenting and sharing their work, particularly when using computa-

tional notebooks that aim to support both exploratory and explanatory phases of

analysis.

3.1 Introduction

Data analysis is an iterative and exploratory process of turning data into insights

[50, 29]. Along the way, analysts produce numerous interrelated artifacts as they write

scripts, generate graphs, and jot quick notes [92]. Working “at the speed of thought”,

analysts typically view their code and outputs as throw-away and not worth annotat-

ing or organizing as many explorations lead to “dead-ends” [50]. Over time this lack

of annotation and organization can produce a tangle of opaquely named and interre-

lated files, leaving analysts with questions such as; Was it “fig final 200k 40 p05.png”
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or “fig final 40k 20 p05.png” that showed the significant difference? And what version

of the code did I use to generate those graphs?

One increasingly popular means of addressing this challenge of organizing the

byproducts of data analysis is to perform analyses in computational notebooks. Com-

putational notebooks combine code, visualizations, and text in a single document that

can be easily shared (Figure 1.2). While computational notebooks have been around

for decades, they have seen rapid adoption in the past decade thanks to the release of

free and open source notebook editors such as Jupyter Notebook and RStudio. Today,

millions of researchers, students, journalists, and analysts use computational notebooks

for a wide range of activities [28].

This new wave of computational notebooks also aims to support collaborative

data analysis through the production and sharing of computational narratives. Many

hope that notebooks will support a wave of open and reproducible research by making

it easier to track and share the process of analysis, not just the results. Fernando Perez

and Brian Grainger, co-Founders of the Jupyter project being Jupyter Notebook, explain

the need for computational narrative in this way [76]:

Computers are good at consuming, producing and processing data. Hu-

mans, on the other hand, process the world through narratives. Thus, in

order for data, and the computations that process and visualize that data,

to be useful for humans, they must be embedded into a narrative — a

computational narrative — that tells a story for a particular audience and

context.

The research in this chapter asks to what extent computational notebooks are

achieving this vision. It deals primarily with Jupyter Notebook, which is used by an

estimated 6-8 million people [28], and whose creators are most explicit about their hope

to support collaborative data analysis.

22



3.2 Study 1: Analyzing 1 Million Jupyter Notebooks

To examine the role of narrative in computational notebooks, I scraped and an-

alyzed the 1.23 million publicly available Jupyter Notebooks on GitHub in July 2017.

GitHub is a popular website for hosting, managing, and collaboratively editing soft-

ware source code and in May 2015, GitHub began to natively render Jupyter Notebooks

so that anyone viewing a Jupyter Notebook on the site would see the fully rendered

notebook rather than its underlying JSON object. This rendering has made Github a

popular site for storing and sharing Jupyter notebooks (Figure 3.1) as it enables an-

alysts to easily share their notebooks with others who may not have a copy of the

Jupyter Notebook software on their machine. While GitHub users cannot tweak and

re-run notebooks on the site, they can at least see the notebook’s contents statically.

Figure 3.1: The growth of Jupyter Notebooks on Github. There are now well over 1
million Jupyter Notebooks shared publicly on GitHub according to Project Jupyter’s
estimates. [71]
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3.2.1 Methods

In July 2017 I searched GitHub for all publicly available Jupyter Notebooks that

had not been forked (i.e., copied) from another repository (i.e., collection of code). For

each notebook, I attempted to download the notebook file, metadata about the reposi-

tory where it was found, and, if present, the repository’s README file. Due to GitHub’s

rate limiting, these queries took two weeks to complete on a single machine. Of the

1,294,163 notebooks hosted on GitHub at the time, I was able to download notebook

files and repository data for 1,227,573 notebooks, or roughly 95% of the public Jupyter

Notebooks on GitHub at the time. The majority of the remaining 5% of notebooks I was

unable to download were empty or mal-formatted files. Realizing that others may wish

to explore this data, I have made the data from this study publicly available through the

UC San Diego Library (https://doi.org/10.6075/J0JW8C39). To support further anal-

ysis I computed a wide variety of features pertaining to each notebook’s content and

organization.

3.2.2 Results

Users: There were 100,503 GitHub users who had publicly shared a notebook

at the time of the study. This was about 0.4% of all GitHub users at the time. The

number of notebooks per user followed an exponential distribution, with 24.5% of users

hosting only one notebook on GitHub, and 27.4% hosting ten or more. The majority of

notebooks (81.4%) belonged to users who had hosted 10 or more.

Repositories: There were 191,402 repositories on GitHub containing at least one

Jupyter Notebook. The number of notebooks per repository followed an exponential

distribution, with 39.1% of repositories having only one notebook and 14.6% of repos-

itories having ten or more. The majority of notebooks (66.4%) belonged to repositories

with ten or more notebooks in them.
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Figure 3.2: A) Notebook length as measured by cells, lines of code, and words of mark-
down. While only 2.2% of all notebooks had no code, 27.6% had no text. B) Content
type across the average notebook. Cells at the start of the notebook were more likely to
be text and cells at the end more likely to be code.

Language & Packages: Jupyter Notebooks can execute code written in over 40

programming languages and users select a primary language when they create each

notebook. Of the 85.1% of notebooks with a language specified, the vast majority were

written in Python (96.3%), particularly Python 2.7 (52.5%). Notebooks written in R and

Julia each accounted for about 1% of all notebooks, with all other languages account-

ing for less than 1% of the dataset. Of notebooks written in Python, R, or Julia, 89.1%

imported external packages or modules. The most commonly imported Python pack-

ages were Numpy (67.3% of Python notebooks with imports), Matplotlib (52.1%), and

Pandas (42.3%), showing a strong emphasis on data science and visualization.

Notebook Length: Jupyter Notebook cells can be any length and contain either ex-

ecutable code, markdown to be rendered as text, or raw content that should be rendered

as is. Most notebook cells in our corpus were either markdown or code (99.8% of cells)

rather than raw content. The number of cells per notebook, as well as the amount of

text and the number of lines of code per notebook all followed log-normal distributions

except that a significant number of notebooks (27.6%) had no text in them but consisted

entirely of visualizations or code (Figure 3.2). Only 2.2% of notebooks did not have any
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code but were entirely text, for example a table of contents notebook that only had text

and links pointing to other notebooks in a collection. Ignoring notebooks without text,

the median notebook had 218 words of text, though the longest, at 55,000 words, was

longer than The Great Gatsby. Disregarding notebooks without code, the median note-

book had 85 lines of code, though the longest had over 400,000 lines of code, more than

NASA’s primary space shuttle flight software [17].

Organization: Notebooks are extremely flexible with their main organizational el-

ement being cells, which can be linearly arranged. Users can provide additional struc-

ture by deciding how to split text or code across cells, using functions, classes, and

comments to structure code, and using markdown headers and links to structure text.

We found that cells at the beginning of notebooks were more likely to be text, but that

the majority of later cells were devoted to code (Figure 3.2). Most notebooks used head-

ers to organize text, and comments to organize code (Figure 3.3).

Figure 3.3: Notebook organizational features. Most notebooks organized text with
headers, and code with comments.

Execution & Outputs: While convention is to run cells linearly from top to bottom

of a notebook, cells can be executed in any order. This can be useful when checking if
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changes to a prior analytical step impact later computations. Jupyter Notebooks track

cell execution order, so I was able to see if notebooks were run linearly or non-linearly.

I found that 43.9% of notebooks with computational output had a non-linear execution

order. Jupyter supports three types of output: stream (e.g., print statements), executed

results (e.g., numerical results), and displayed data (e.g., rich data displays such as

graphs and tables). In our corpus, 85.0% of notebooks had output in at least one cell,

with 68.5% of notebooks having stream output, 58.1% having an executed result, and

45.5% having displayed data.

Description of Repositories: GitHub repositories provide a number of facilities

for describing and documenting projects. These include a short description, longer

README files that get rendered on the repository’s homepage, and GitHub-hosted project

websites. While 58.5% of notebook repositories had a description and 73.0% had a

README, only 4.5% had a GitHub-hosted project website. Analyzing the descriptions

gives a sense for the topics notebooks analyze and discuss. Excluding common english

words such as articles or prepositions and words related to notebooks such as “note-

book” or “jupyter”, the ten most common words in repository descriptions were learn-

ing, project, machine, udacity, course, deep, nanodegree, neural, kaggle, and model,

showing an emphasis on machine learning and education.

3.2.3 Discussion

This GitHub corpus is very diverse. Whereas some notebooks contained only a

single line of code others were fully interactive textbooks spanning hundreds of pages

when printed. While some stood alone, others were part of large collections of note-

books that documented a multi-step analysis. While some were homework submis-

sions, others demonstrated software packages, or documented original research. This

diversity discourages generalization, but I highlight a few broad trends related to the

use of text and narrative.
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First, most notebooks were not rich computational narratives but loose collec-

tions of notes and scripts. As discussed in in CHAPTER 2, at a bare minimum narratives

need to describe a series of events and the connections between them. However, a quar-

ter of all notebooks in our corpus did not have even a single word of explanatory text.

Disregarding these, the median notebook still had roughly half as much text as this dis-

sertation’s abstract (Figure 3.2). And while it could be argued that the analyst’s code

itself is a description of events and the ordering of cells a tacit connection between them,

nearly half of the notebooks in our corpus had a non-linear execution order. From this

evidence, there seems to be a general lack of intention to describe or order analytical

events in the notebooks studied, other than what is expedient for analysis.

Second, descriptive text was not evenly distributed across notebooks (Figure

3.2). Text was most likely to occur at the very beginning of the notebook, steadily less

prevalent as the notebook progressed, and least likely to occur at the very end. This

may reflect the use of introductory text to present the goals and organization of the

notebook, but not conclusion text to reiterate goals and interpret results. Alternatively,

the declining use of text as the notebook progresses may demonstrate that less explana-

tion is needed once the analysis has been set up, or that analysts tire of annotating their

notebooks over time.

Third, notebooks in our corpus rarely stood alone. The vast majority were in

repositories containing other notebooks, a README file, or both. A single narrative may

flow across multiple notebooks, from one for data cleaning into another for profiling

and modeling. Moreover README files may provide additional information about the

motivations, background, and findings of the analysis. This finding sheds doubt on any

claim that notebooks generally serve as self-contained descriptions of an analysis.

Finally, the exploratory and iterative nature of data analysis is reflected in the

fact that nearly half (43.9%) of notebooks in our corpus were uploaded to GitHub with a

non-linear execution order. This means that analysts went back and re-ran earlier cells,
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rather than just linearly writing and executing code. This figure should be considered

as a lower-bound as many analysts may have done a clean run of their notebook before

sharing it online, obscuring their non-linear analytical process.

These results demonstrate that while many notebooks are certainly used for iter-

ative analysis, few contain lengthy explanations of their contents or much evidence of

intentional ordering of scripts and results. Are analyses performed in notebooks being

explained in other ways? Or might it be that particular uses of notebooks employ more

narrative than others? I began to address these questions by focusing on one particular

community of practice: academic data analysis.

3.3 Study 2: Narrative in Academic Notebooks

In this second study, I focused on how notebooks documenting academic data

analysis employ narrative. Whereas the first study looked at the structure of notebooks

at scale, this study sought to characterize the structure of notebooks in greater detail

within a particular community of practice.

I chose to study academic notebooks because, relative to other communities,

the collaborative nature of academic research may favor inclusion of text to explain

methods and results so others can understand and build on the work. Transparency

and replicability of analytical processes is also of increasing importance in the scien-

tific community [67, 74]. To give an idea of the richness of some scientific notebooks,

one highlighted by the Jupyter team [48] which supplements a Nature article [15] con-

tains over 2000 lines of code and 7000 words of text, even as the Nature article itself is

half that length at 3500 words. I explore whether this example is an outlier, or if most

academic notebooks employ narrative to communicate process and results in detail.
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3.3.1 Methods

Sampling: With the help of a research assistant I sampled academic computa-

tional notebooks by searching GitHub for repositories with both a Jupyter Notebook

(.ipynb) file and a README linking to an academic publication. In a pilot analysis of

“interesting” academic notebooks [48], we found that many notebooks were in reposi-

tories whose README had a URL pointing to a journal, conference, or pre-print publi-

cation. While many of these links lead to journal-specific websites, such as nature.com,

the most common links pointed to Document Object Identifiers (DOIs) and arXiv pre-

prints. To obtain a sample of academic computational notebooks, we searched GitHub

for repositories containing Jupyter Notebooks and a README with a DOI or arXiv link.

We purposefully sampled the resulting 858 repositories to get 52 from a range of dis-

ciplines, looking for keywords such as “chemistry”, “physics”, and “linguistics” in the

READMEs. These 52 repositories contained 221 notebooks.

Coding: We iteratively coded all 221 notebooks to develop codes describing how

academic notebooks employ text [90]. Specifically, we coded each notebook’s genre,

organization and use of text, and the organization and use of code comments. My re-

search assistant and I open coded 50 notebooks to develop initial codes and refined and

reapplied these codes until we achieved greater than 60% inter-rater reliability (Cohen’s

Kappa), which has traditionally been considered a “substantial” level of agreement [56].

We then divided and separately coded the remaining notebooks. We used a similar pro-

cess to identify features of the repositories containing academic notebooks, coding for

the contents of the repository as well as contents of their README files.

3.3.2 Results

Repository Content and READMEs: In 43 of the 52 repositories, notebooks made

up the majority of contents, averaging 81.6% of the repository’s total bytes. In the
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nine cases where notebook content was the minority, the majority of repository con-

tents were program files that the notebook imported and called during the analysis. In

addition to notebook files, the majority of repositories contained source code in pro-

gram files such as .py files (40 repositories). Many contained raw data (24 repositories),

figures (15), manuscript files (10) and additional documentation (7). Most repository

README files described what the repository’s code did (33 repositories) and the steps

required to setup or install it (33). Many READMEs also described the organization of

the repository’s files (24) and how to execute the code or notebooks once configured

(18). Few discussed analytical reasoning (7) or results (10).

Notebooks: Half of the repositories (26) contained a single notebook. The two

repositories with the most notebooks (52 and 26 respectively) were largely repetitive

with notebooks that tweaked one or two parameters at the top, and then ran the exact

same collection of cells to get a version of a model or result. To prevent these nearly

identical notebooks from skewing our data, we removed them from further analysis,

leaving 50 repositories with 145 notebooks for further hand-coding (Table 3.1). These

145 notebooks were generally longer than the notebooks from our GitHub corpus in

Study 1 with a median length of 31 cells (compared to 18 in Study 1) 102 lines of code

(85), and 329 words of explanatory text (218).

Organization and Use of Text: Most notebooks had an introductory text cell (55%)

which typically described the analysis to follow but almost none had a concluding text

cell (3%). The vast majority of notebooks used headers (86%), and slightly fewer had

text aside from the headers to explain the analysis (77%). Of those notebooks with non-

header text, 88% used that text to describe analytical steps, but only 34% used it to

explain reasoning, and just 38% to discuss results.

Organization and Use of Code Comments: We found 82% of notebooks had code

comments. Of these, almost all notebooks (99%) used comments to describe what the

code was doing, and half (50%) used comments at some point to control the program
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flow by commenting out alternative code. Very few notebooks used comments at any

point to explain the analysts’ reasoning (10%) or results (4%).

Table 3.1: Length and content of academic computational notebook by genre. Analysis
notebooks employed more text, while Figure notebooks had more code.

Analysis Tutorial Figure All
# Notebooks 54 41 50 145

# Cells 38 23 17 31
Lines of Code 102 89 162 102
Words of Text 434 213 103 329

Headers 87% 78% 90% 86%
Text 89% 73% 66% 77%

Text Intro 72% 61% 30% 55%
Text Steps 94% 97% 70% 88%

Text Reasoning 46% 33% 15% 34%
Text Results 29% 37% 48% 38%

Comments 89% 66% 88% 82%
Com. Steps 98% 100% 95% 99%

Com. Reason 15% 15% 2% 10%
Com. Results 2% 7% 4% 4%

Com. Flow 58% 37% 50% 50%

Notebook Genre: Through our iterative coding we identified three broad cate-

gories of academic notebook; 54 notebooks documented a full analysis, 50 simply repli-

cated figures, and 41 were tutorials for how to use a particular software package. The

use of text varied across genre (Table 3.1) with full analysis notebooks typically having

more explanatory text than figure replication notebooks and being more likely to have

a textual introduction to the notebook. On the other hand, figure replication notebooks

tended to use text to discuss results more than analysis notebooks. Note that due to our

small sample size and significant variance between notebooks, none of these differences

was statistically significant.
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3.3.3 Discussion

This closer examination of academic computational notebooks revealed distinct

genres, highlighting that even within the smaller community of academic users, com-

putational notebooks serve a variety of purposes. Yet, even in the most verbose genre

(i.e., notebooks that replicated the full analysis described in a paper) analytical reason-

ing and results were discussed in only about a third of notebooks. While a couple note-

books contained richly detailed narratives with several thousand words of text, most

were simply collections of scripts with occasional notes describing the code.

Similarly, most repository README files focused on what the repository’s files

did and how they were organized, but did not discuss reasoning or results. This lack

of explanation is not because analyses were straightforward. Even in these publicly

shared notebooks, half used code comments to control program flow, demonstrating

that versions of the analysis were tried, evaluated, and rejected in favor of other im-

plementations. It seems notebooks were being used for iterative analyses, but not nec-

essarily for constructing rich narratives. Consider that 90 of the 145 notebooks in our

sample had less text than their repository’s README. This suggests that analysts may

be using other media to explain their analyses.

Still, the consistent use of headers, text descriptions of steps, and README files

describing repository contents demonstrates that analysts are taking at least some time

to annotate and explain their analyses. What audience do analysts consider when they

annotate their notebooks? And why do they seem to devote more effort to describing

steps but not higher-level motivations or reasoning? I began to address these questions

in a third study.
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3.4 Study 3: Interviewing Academic Data Analysts

The second study highlighted that, when present, text in academic computa-

tional notebooks was more often used to label steps of the analysis than to discuss the

reasoning that guided the analysis or to interpret results. Seeking to better understand

why these notebooks lacked the rich computational narrative they were designed to

support, I interviewed 15 academic data analysts who use computational notebooks on

a regular basis.

3.4.1 Methods

Participants: I recruited 15 academic data analysts (4 Female, 11 Male) from eight

laboratories at UC San Diego by attending weekly lab meetings and emailing open

science listservs at the university. Participants included six postdocs, five PhD students,

three staff researchers, and one undergraduate student. Participants researched topics

ranging from computational biology and pharmacology to astronomy and engineering

science in eight different laboratories. Four of these laboratories had multiple people

using computational notebooks as well as extensive infrastructure for running, storing,

and sharing notebooks. In the other four labs, our participants were the only ones using

computational notebooks. Five of our interviewees had authored at least one notebook

from our Study 1 corpus, though we did not specifically recruit them for this reason.

None was the author of a notebook included in our Study 2 corpus.

Procedure: I conducted twelve semi-structured interviews, three with pairs of an-

alysts from the same lab and nine with individual analysts. Each interview lasted 30-45

minutes and focused on how each analyst organized, edited, and shared computational

notebooks. I grounded each interview by discussing at least one notebook the analyst

had been working on recently. Sample questions included:

1. Can you show us a notebook you have been working on recently?
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2. Can you explain the analysis in this notebook?

3. What sections or cells have you spent the most time working on?

4. Who else has access to this notebook? Do you plan to share it further?

5. Would you need to make any changes before sharing it further?

With the help of a research assistant I transcribed each interview and iteratively

generated an affinity diagram to identify themes across participants.

3.4.2 Results

Notebook Use and Reuse: Our participants used notebooks for a variety of rea-

sons, many of which were educational. Analysts gave lectures from notebooks, as-

signed homework in notebooks, and used notebooks to train new lab members. While

these educational uses warrant further study, we focused our interviews on the use

of notebooks for research, where they were most commonly described as playgrounds

for experimentation (seven participants), particularly when prototyping and debug-

ging code. While many used notebooks to develop pipelines to automate multi-step

analyses (five participants), others felt that notebooks were best for small-to-medium

sized tasks and preferred language-specific development environments for larger anal-

yses which they would run repeatedly as new data became available (two participants).

Two other participants would not run analyses in the notebook but copied code into the

notebook as a record of work performed elsewhere.

Analysts spoke not only of notebooks’ initial use during analysis, but also their

ongoing reuse. One intended reuse was reconstructing provenance, that is, retracing

the exact steps used to generate a result. This provenance was useful for keeping track

of what analyses had been tried, even if they led to dead ends, keeping older versions
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of figures in case an advisor decided they preferred them to the new one, and helping

analysts untangle exactly how they achieved a result.

While analysts can use computational notebooks to track their every step, in

many applications (including Jupyter Notebook) this tracking does not happen auto-

matically. As a result, analysts risk losing valuable history of their analysis if they

re-run or delete cells which could be a source of frustration. As one participant put

it:

I wanted Jupyter to be the tool that tracked what I did, and I’m sad that

it’s not. — P6

A second reuse of notebooks our participants mentioned was code reuse. Indi-

vidual analysts might want to reuse snippets of code from their own past notebooks, or

they might want to copy code from others’ notebooks. This could lead to keeping code

in notebooks for easy access and discourage deleting old code:

I don’t necessarily want to delete that messy version of the notebook be-

cause I might not even remember if I had something in there that, like I, I

might want again. — P14

A third potential reuse of notebooks was enabling full replication of a result.

To support this reuse notebooks should be clean and annotated enough that another

analyst could reasonably re-run the notebook on a different computer. However, as

one participant noted, there are numerous barriers to making notebooks both human

and machine readable, and preparing notebooks for replication requires more careful

construction than preparing them as a loose history of previously written or run code.

As one participant wondered:

Should sharing just be, look at their code, ’Oh they did that’? Maybe just

that. Maybe it’s too much to go all that way [to make it fully replicable]...

it’s really hard to make it runnable on somebody else’s server — P13
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A fourth reuse of notebooks after the original analysis was presenting results.

In these notebooks analysts downplayed the role of code and added text to describe

methods and results. In many cases, they even transferred outputs of the analysis to an

entirely different medium (e.g., slides, word processing document) for easier review.

In some cases this re-organization was for a non-technical audience, so analysts

tried to draw attention away from the code and toward the conclusions by copying

results to another media for sharing. In other cases, when the audience was technical

and the desired feedback was technical, analysts would focus on refactoring code in the

notebook so it was easy to understand and critique.

While notebooks serve these different purposes, some of our participants felt it

is difficult for them to serve more than purpose one at a time.

It’s a trade-off between having a very extensive notebook where every

step is documented, or only tracking the last evolved state of whatever

the question is. — P1

I know I need to make a new version of it that I think will be like, “Github

ready”. I want my notebook to look like the examples of notebooks that

I talked about from my lab mate, but those are so clean that they don’t

represent my normal notebooks. They’re like, presentation notebooks.

Like this is perfect. This has descriptions of all the stuff I did and there’s

no fooling around. — P14

Sharing: Analysts shared their notebooks in ways that reflected differing per-

spectives on appropriate uses and audiences. For some analysts, notebooks were per-

sonal artifacts, best for individual use or select sharing with other technically oriented

“insiders”:

A notebook is a very personal thing, so even if I would say, “Okay, here

[labmate] please look into it”, it wouldn’t be very helpful because it’s very
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much reflecting my style and for sure he would do slightly different types

of analysis to come to the same conclusions. — P1

I think, that notebook as a medium is sort of useful to, you know, those in-

siders, the people that will be interested and will, you know, tweak some

parameters and then possibly, you know, redo the exact same analysis just

on different data. — P2

These analysts were skeptical that collaborators wanted to see their code and

instead shared results through mediums such as email, word processing documents,

and slides. They would often also share the full notebook just in case their collaborator

wanted to see more details, but some felt that reviewing the notebook got in the way of

interpreting higher-level findings and providing feedback.

So over time I had to realize that the collaborators... have no computer sci-

ence background, nor a very strong microbiome background, so I have to

report on a very high level... I try to condense what I’m finding within one

sentence... And I’m attaching the PDF [version of the notebook] should

the person be interested in details, but typically no one is really looking

into the methodology I’m applying, so they just trust me. — P1

I’ve got all this code and I’ve got my data but this is really not interesting

and, you know, my collaborators should not really be worried about that.

They should be worried about, like, what do these figures represent and

whether this is something that they are expecting, or is this, is it likely

there is something wrong with the way that we are processing their data.

— P2

In contrast to this “notebooks for insiders” perspective, some analysts felt that

notebooks were good for interacting with people who didn’t program. However, note-
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books for a general audience required careful curation to make them easily interpretable

and having programming novices run the notebook could present additional challenges.

I’m trying to explain every detail unless it’s like very intuitive... I wanna

have chemistry people be able to read the notebook... and if there is a

problem, they are going to have to look for a bioinformatician. But I just

wanted them to be able to read for now. — P8

Cleaning, Layout & Annotation: Whether for personal or shared use, every analyst

we interviewed felt their notebooks had to be cleaned. Analysts described their note-

books as “messy”, containing “ugly code” or “dirty tricks”, and needing “cleaning” or

“polishing”. Our interviewees said their notebooks needed cleaning because they were

“too lazy” to add annotation, needed to be “at their best” to produce well annotated

notebooks, or simply “ran out of time”. As one participant put it:

Mine feels like a mess, mine feels like if somebody else looked at it they

wouldn’t have any idea what, really what order [I ran the code in], or like

why I did things. — P12

Cleaning involved both organizing the notebook and adding textual annota-

tion. Organization included adding tables of contents, sequentially numbering sections

within and across notebooks, keeping scripts in individual cells under 100 lines of code,

and splitting analyses that were “bulky” or “crowded” into multiple notebooks.

I like to break apart my analyses into what I consider to be notebooks that

cover all the work you would do up to a stopping point where a human

has to evaluate it. — P7

For me [the biggest challenge is] organization, I don’t know if I should do

things chronologically or if I should do things by type of data... If I run
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something and I run it four different times do I just make a note up here

of the four parameters I used, or do I do four different cells where I ran it

each time?... at some point [I end up] just getting frustrated and I’ll make

a new notebook. — P12

Analysts annotated their notebooks both for personal use and easing interpreta-

tion by collaborators. Personal documentation was added to prevent “getting lost” in

the notebook, to remember what was done previously, and visually differentiate sec-

tions of the analysis to aid scanning.

So I try to document what I’m doing, or at least what the tasks are because

it’s so easy to get lost in all the different specific questions. — P1

When the notebook was to be shared, annotation focused instead on presenting

the analysis at a high level, providing background information and interpreting results.

The thing that I usually end up having to put in that’s tedious but it’s

kind of the whole point, is, you know, okay I generated these beautiful

visualizations and then what are the conclusions that I drew from them,

because, in our role, we’re supposed to be the experts who are saying not

just, “This is the visualization”, but “If you look at this visualization the

conclusion that you should draw”... the interpretation — P6

Social Practice: Several analysts felt that there was not sufficient social expectation

or practice to make widespread sharing and detailed annotation of notebooks feasible.

This could be due to supervisors not wanting to see the details of an analysis, or lacking

formal training in how to document data analyses in notebooks.

Does your PI [Primary Investigator] care about the code or not? And I

think that most of the time, from my experience, it’s been no. You know
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they just want to see the plots... That’s, I think, driven by what, you know,

what our old kind of standard kind of pathway was... it was a lot of just

scripts that you couldn’t really port and couldn’t really make available.

— P15

With like paper lab notebooks in the wet lab you get really heavy train-

ing... you should write like your name, your date, kind of the hypothesis

that you’re doing, a little bit of the intro and then like your materials what

your steps were and then some sort of conclusion like and your data... the

notebook isn’t physically set up that way... But you just do it that way be-

cause that’s how you’re trained to do it. — P12

Publication and Reproducibility: Despite this lack of training or pressure to share

notebooks in some labs, many analysts expressed a desire, even an obligation to doc-

ument their notebooks in such a way as they would be reproducible, that is, that they

could be run by another analyst on their own computer. However even these partici-

pants mentioned several barriers to making their notebooks truly reproducible. One

was deciding when the analysis was ready for publication. Another was receiving

pushback from collaborators when preparing to publish a notebook publicly.

So to define the point in time when a publication is finalized is very com-

plicated. Is it when you first submit? Is it when it’s in review? Or when

you only have to do some format editing? So there is no hard deadline

unto which you have to finalize your notebook, and therefore it’s very

easy to not do it... it’s a lot of additional work, and you also have a todo

list of more pressing issues — P1

The couple times I’ve mentioned it [publishing a notebook] I’ve gotten

people, like, they’re worried that it like opens them up to more criticism

than it’s worth for them. — P7
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3.5 Discussion

These results highlight the effort involved in organizing, annotating, and sharing

computational notebooks. In particular, they highlight the tension between exploration,

in which iterative experimentation tends to produce “messy” notebooks, and explana-

tion, in which these notebooks are “cleaned” for a particular purpose (e.g., tracking

provenance, code reuse, replication, presentation).

When tailoring notebooks for each of these uses, there is a tradeoff in how the

notebook is annotated and organized that reflects the tension between exploration and

explanation. Notebooks that track provenance focus on faithfully tracking the exploratory

process of data analysis but, given the interactivity of notebooks, analysts seeking to

track provenance need to be careful to not overwrite past actions. Alternatively, note-

books for presentation may obscure almost the entire exploratory process of data anal-

ysis in an effort to make it easy to review and provide feedback on the results. Note-

books to be shared publicly have to meet an even higher standard of cleanliness that

one participant noted removed all the exploratory “sandbox” material. Because of these

trade-offs, it is difficult for notebooks to effectively serve more than one purpose at a

time.

My interviews also highlight that while notebooks technically enable analysts

to wrap computational code and results with explanatory text, they do not necessarily

prompt more frequent reflection or annotation. Social practices like presenting at lab

meeting and writing papers may still be stronger triggers for these explanatory and

sensemaking activities. As P12 noted:

...it’s mostly lab meetings and then actually writing the paper that are the

only times, or like the initial planning, that are the only times where you

have to sit and be like “Why am I doing this? What am I gonna do? What

am I finding? What do I think it means?”
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3.6 Conclusion

Computational notebooks address many fundamental challenges with perform-

ing, documenting, and sharing data analyses. They support incremental and iterative

analyses, enabling users to edit, arrange, and execute small blocks of code in any or-

der. They enable explanation of thought processes by allowing analysts to intersperse

code with richly formatted textual explanations. They facilitate sharing by combining

code, visualizations, and text in a single document that can be posted online or emailed.

Some computational notebooks are truly remarkable in the way they elegantly explain

complex analyses [48].

Yet, the three studies in this chapter demonstrate a tension between exploration

and explanation that complicates construction and sharing of computational notebooks.

The exploratory process of data analysis tends to produce “messy” notebooks with al-

ternative code and duplicate cells. These notebooks need to be cleaned before they

can clearly explain the analysis to a particular audience (e.g., the analyst’s future self,

a technical colleague, a manager, or the public) for a particular purpose (e.g., tracking

provenance, supporting code reuse, enabling replication, presenting results). Cleaning

notebooks is often tedious, manual work, and it is difficult to craft notebooks that serve

more than one purpose or address more than one audience at a time. Many analysts

simply choose to explain and share their analyses using other, more established media,

or only provide a link, “for the curious”, to the notebook where they performed the

analysis in the first place.

The issues of notebook “cleanliness” and intelligibility resonate with the dis-

cussion of refactoring and “technical debt” in software engineering [14]. Rather than

calling for the elimination of technical debt, recent work acknowledges its inevitability

and suggests better ways to manage it. While some lessons from this literature may ap-

ply to data analysis, there are significant differences in the process of iteratively writing

43



scripts to analyze data and writing robust source code for enterprise applications.

The tension between exploration and explanation demonstrated in this research

is also echoed in the literature on design rationale [58, 65]. When in the middle of a de-

sign process, designers often do not want to pause to document emergent requirements

or reasons for a particular design direction as this can disrupt their train of thought

[13]. Moreover, any documentation they create may quickly go out of date or be contra-

dicted by realizations later in the design process. To encourage more capture of design

rationale, prior research as suggested providing short term payoffs to design rationale

documentation [13]. Taking a similar approach, the next chapter will explore how to

providing an immediate benefit to crafting well organized and annotated notebooks.

3.7 Synthesis

This chapter presents three studies of how a tension between exploration and

explanation hinders analysts from using computational notebooks to track and share

their work. The contributions include:

1. Evidence for a lack of narrative in most computational notebooks either through

a lack of explanatory text altogether, or failure to use that text to describing rea-

soning or results

2. Theory that a tension between exploration and explanation is central to data anal-

ysis and hiders tracking and sharing data analyses

3. A open dataset for future research containing over 1 million computational note-

books (https://doi.org/10.6075/J0JW8C39)

This chapter, in part, includes portions of material as it appears in Exploration

and Explanation in Computational Notebooks by Adam Rule, Aurelien Tabard, Jim Hol-

lan in the 2018 proceedings of the ACM international conference on Human Factors in
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Computing Systems. The dissertation author was the primary investigator and author

of this paper. The research in the chapter was also supported by the work of Regina

Cheng and Nathan Hassansadeh who assisted with the second and third studies of this

chapter respectively.
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4 Aiding Communication of Data

Analyses through Flexible Organization

and Navigation

This chapter presents the design and testing of Janus, a Jupyter Notebook exten-

sion enabling analysts to add history and hierarcy to their notebooks. Through

two studies, the first a formative study with novice analysts and the second a

multi-week technology probe with expert analysts, I demonstrate that hierarchy

in particular enables analysts to flexibly organize and navigate their notebooks in

ways that support both the ongoing analysis and later communication of results.

These findings support the perspective that flexible and lightweight organization

and navigation can help reduce the tension between exploration and explanation,

and in turn make complex analyses easier to track and share by enabling analysts

to tailor their notebooks for varied uses.

4.1 Introduction

Exploratory data analysis is a process of extracting insights from data and com-

municating those insights to others [30, 50, 92, 99]. As the scale and scope of data

expand, this process has become increasingly collaborative [36, 50]. Consider a jour-
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nalist who enlists several colleagues to sort through a collection of leaked documents,

or a researcher who sends biological samples across the country as part of a multi-site

study; in both cases collaborators need to discuss details of the analysis, not only to

coordinate efforts but also because small changes to how data are collected, cleaned,

or analyzed can lead to vastly different results. But clearly communicating complex

analyses is remarkably difficult, especially when the analysis involves programming.

This dissertation has focused on how analysts use computational notebooks com-

bining code, visualizations, and text to communicate their work, either to their future

selves or their collaborators. While computational notebooks were explicitly designed

to help analysts craft compelling narratives to share with others [76], as the previous

chapter showed, more often than not analysts’ notebooks are loose collections of notes

and scripts that even they have difficulty understanding at a later time. Rather than

share these “messy” notebooks with collaborators, most analysts share simplified re-

sults through media such as email, slide decks, or paper printouts that lack a notebook’s

interactivity, reproducibility, or context.

While computational notebooks help analysts manage their files they have yet to

realize their anticipated collaborative potential. The prior chapter argued this gap is in

part due to a fundamental tension between the conflicting processes of exploration and

explanation in data analysis. Data exploration involves working roughly and quickly to

answer a set of evolving questions. Explanation involves a slower process of stepping

back to reflect on what the results mean. Further exploration can break or complicate

current explanations, and pausing to add explanatory text can put further exploration

on hold. Many analysts prioritize data exploration and simply wait until the next dead-

line to clean and organize their scripts, even when using a notebook. As one analyst in

the final study of the last chapter noted:

...it’s mostly lab meetings and then actually writing the paper [and] initial

planning, that are the only times where you have to sit and be like “Why
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am I doing this? What am I gonna do? What am I finding? What do I

think it means?”

Even when analysts do take the time to clean and share their notebooks, they

report being skeptical that anyone looks at them because the notebooks may seem too

detailed, or collaborators may have difficulty tracking the operation of code.

This chapter explores how to design computational notebooks to encourage clearer

communication, freer sharing, and deeper engagement with complex data analyses.

Through two design workshops with data analysts I explore ways to provide an im-

mediate benefit to notebook annotation and organization activities so analysts have

increased incentive to write clear notebooks. Based on these workshops I developed

Janus (Figure 4.1), an extension to Jupyter Notebook that enables analysts to add his-

tory and hierarchy to their notebooks, giving them more control over how different sec-

tions of their notebook are displayed and how prior explorations are tracked. Through

two studies of Janus I find that adding hierarchy in particular enables analysts to nav-

igate and manipulate their notebooks in ways that support both ongoing analysis and

later communication of process and results. I find that analysts and their collaborators

do not passively read notebooks from top to bottom but seek to manipulate, organize,

and navigate them in ways that support the task at hand. These findings support the

perspective that richer forms of navigation and organization might help analysts use

notebooks and other computational media to more clearly communicate complex anal-

yses by providing a lightweight means to tailor the notebook to task at hand.

4.2 Workshops: Identifying Design Opportunities

There are likely many ways to ease the tension between exploring data and ex-

plaining process that prevents computational notebooks from being a more effective

medium for collaborative data analysis. Past research on managing technical debt has
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demonstrated that, in the related domain of software development, developers often

know they should be annotating and cleaning their code, but feel they have little time

to do so [6]. Moreover they typically rely on manual methods to clean their code rather

than relying on tools [66]. Related work on documenting design rationale has sug-

gested providing a short-term benefit to documentation which may appear to only

have a long-term payoff [13]. Based on these findings I took the approach of trying

to provide an immediate benefit to manual notebook organization or annotation activ-

ity, incentivising notebook cleaning rather than automating it or encouraging analysts

to clean their notebooks in a separate phase after analysis. Adopting this point of view,

I ran two workshops with the help of two research assistants to identify opportuni-

ties for the design of computational notebooks to help analysts write clearer notebooks

in-the-moment.

4.2.1 Brainstorming Workshop

We recruited seven graduate students from a large public university for the first

workshop. Each participant had experience with Jupyter Notebook as well as design

thinking [8]. We recruited design-savvy analysts to avoid brainstorming pitfalls such as

prematurely focusing on a single solution or discouraging wild ideas. At the start of the

90-minute workshop we briefed participants on common barriers to clear communica-

tion in computational notebooks and gave them the following prompt: How might we

make it easier for analysts to annotate, organize, and reflect on analyses in their notebooks? How

might we provide an immediate benefit to organization and annotation activities so analysts get

into the habit of doing them in-the-moment? We asked participants to brainstorm ideas in-

dividually and then build on these ideas in teams of 2-3 participants. In the final portion

of the workshop each team sketched and presented one or two of their most promising

ideas to the larger group. Participants generated 78 unique ideas before forming three

teams to refine them. The teams’ final sketches embodied fourteen design ideas such as
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providing templates for common analytical tasks, generating rich tables-of-contents to

aid navigation, and providing a second notebook panel as a scratchpad or presentation

view. Together these fourteen ideas demonstrated five immediate benefits that note-

books could provide to incentivise in-the-moment annotation or organization. These

include:

1. Navigation - Helping navigate long, repetitive, or complex notebooks

2. Version Control - Helping track and compare versions of their code

3. State Inspection- Helping to see the state and evolution of variables and processes

4. Debugging - Helping proactive detection and fixing of code errors

5. Architecting - Helping split code and text across cells, functions, and files

The reminder of this chapter will focus on encouraging analysts to annotate and

organize their notebook by my making it easier to navigate their notebooks and track

versions of their code. However, the three other benefits are worth exploring, and in

some cases are being leveraged in existing computational notebooks.

Participants’ desire for assistance with state inspection stemmed from their ex-

perience writing numerous small snippets of code just to recall the name, structure,

and value of existing variables before acting on them. These snippets of code tend to

clutter the notebook as they are often used once and forgotten until they get in the way

of some other task. Notebooks such Iodide and RStudio, for example, provide panels

for looking at which variables are currently in the environment, though not necessarily

their provenance.

Participants’ desire for help with debugging stemmed from similar experience

writing small snippets of code to debug a portion of their analysis. To my knowledge no

computational notebook explicitly supports debugging as many traditional integrated
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development environments do, though the release of JupyterLab with its support for

a broader range of development tasks might lend itself to a debugger more than other

more focused notebook interfaces

Finally participants’ desire for help with architecting stemmed from their experi-

ence with the fuzzy boundaries between what should be in a single notebook, multiple

notebooks, or a separate script to be imported into multiple notebooks. JupyterLab was

in part motivated by the same observation that analysts often worked across multiple

notebooks and would often save portions of their notebook code as separate program

files and needed better tools for editing these akin to those available for software devel-

opment.

4.2.2 Paper Prototyping Workshop

Based on the brainstorming workshop, we developed paper prototypes of three

notebook extensions that leverage some of the benefits above to address a challenge

observed in prior research. These included a rich variable inspector to aid state inspec-

tion, cell and notebook-level histories to aid version control, and a two-panel notebook

to aid simultanous navigation of high-level narrative and implementation details. In

a second workshop we had six of the seven brainstorming workshop participants use,

critique, and revise one or more of these paper prototypes for up to 30 minutes.

Participant feedback on the paper prototypes highlighted a design opportunity

at the intersection of cell-level histories and a two-panel notebook. Participants were

intrigued by the idea of a rich variable inspector, but wanted assistance not only with

viewing but also manipulating variables. One promising step in this direction would be

to apply the principles of Wrangler [49], a direct manipulation data cleaning tool, to the

notebook environment where users could interact with data through both a graphical-

user interface and code. However, more participants saw potential in cell-level histories

and a two-panel workspace. They were particularly interested in finding ways to have
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more control over (or good defaults for) the naming and layout of different sections

of their notebooks or versions of individual cells. For example, perhaps cell versions

could derive their names from the values of parameters that changed between them.

In the remainder of this chapter I present Janus, an extension to Jupyter Note-

book motivated by these insights and designed to help analysts write clearer notebooks

through the addition of history and hierarchy that give them more control over how the

notebook is laid out. I then discuss two studies of Janus’ impact on how analysts docu-

ment, share, and build on one another’s work.

4.3 Janus: History and Hierarchy for Computational Note-

books

Jupyter Notebooks are linear collections of cells or independent blocks of code

or markdown text. Janus (Figure 4.1) is an extension to Jupyter Notebook that enables

analysts to view notebook and cell-level histories as well as add hierarchy by hiding

groups of cells in named sections.

4.3.1 History: Cell and Notebook Versions

Janus tracks changes to the notebook and presents these as cell and notebook-

level histories. Prior observations revealed that analysts often try variants of the same

model or graph using slightly different parameters but face a trade-off between either

deleting these experiments, or cluttering the notebook with them. Janus supports a

different presentation of alternate and historical code by letting users either view and

name past versions of individual cells, or see a full history of their notebook’s evolution

over time, using a slider to move between notebook versions. Janus saves any notebook

changes to an SQLite database on the user’s machine. When the user names a particular
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Figure 4.1: The Janus Jupyter Notebook extension. We developed Janus to explore the
implications of adding history and hierarchy to computational notebooks. Janus lets
users hide groups of cells in named sections (A), or an individual cell’s code or outputs
(B). These hidden cells can be selectively shown in a sidebar (C). Janus also lets users
track and name different versions of individual cells (D).

version of a cell, that version is extracted from the database and saved in the notebook

file itself, enabling targeted sharing. A collaborator with Janus would be able to see

named cell versions, but not unnamed versions or the notebook’s full history.

4.3.2 Hierarchy: Hiding Cells, Inputs, and Outputs

Janus also lets analysts hide cells from the main flow of the notebook. When a

user hides a cell or several consecutive cells, Janus renders a section header representing

the hidden cells in their place. This header can be named and provides basic informa-

tion about the hidden cells (i.e., how many lines of code they contain). Hovering over

the section header shows a miniaturized view of the hidden cells, making it easier to vi-
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sually search for particular cells without fully showing them. When the section header

is clicked, it reveals a second notebook panel to the right of the main notebook con-

taining the hidden cells. Janus also let’s notebook users hide only a cell’s source code or

outputs, which can also be shown in the sidebar. Originally Janus’ sidebar only showed

one section of hidden cells at a time, but we modified it to show multiple sections at a

time based on feedback from the formative study described in the next section.

Janus stores information about which cells are hidden in metadata attached to

each cell. This metadata is saved in the notebook file itself, so other Janus users viewing

the notebook would also see a version of the notebook with hidden cells. Notebook

users without Janus would simply see the entire notebook in it’s normal fully-visible

state.

These two features, lightweight history and hierarchy, change how analysts can

interact with their notebooks without breaking the underlying metaphor of a linear col-

lection of cells. While simple, these changes have potential to support new ways of

performing and sharing data analysis. They may also support a new mental model of

notebooks that separates messy implementation details from the final presentation, af-

fording new forms of sharing without requiring major changes to the underlying note-

book. Moreover, being able to hide and name groups of cells may make it easier for

collaborators, and even the original analyst, to navigate and understand notebooks.

We investigated these possibilities through two studies, finding that notebook hierar-

chy in particular supports a range of navigation and manipulation behaviors that aid

both ongoing analysis and later communication.

4.4 Study 1: Formative Study with Novice Analysts

In this first study I wanted to see if notebook users had trouble adapting to a new

paradigm of having hidden sections. I also wanted to see if adding this hierarchy en-
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abled analysts to more easily understand, navigate, and build on a collaborator’s note-

book. To address these questions I conducted a formative study with 32 undergraduate

data science students under the scenario that they were extending a lab-mate’s analysis.

Notebooks are often used to share code within labs. For example, a senior researcher

may share a notebook with a junior colleague to introduce them to a particular method

or line of research. However, even when sharing within a lab, analysts spend substan-

tial time cleaning their notebooks to make them easier for colleagues to follow.

4.4.1 Methods

With the help of a research assistant I recruited 34 students from an introduc-

tory undergraduate data science course at a large public university in the United States

and gave them a $25 gift card for participating. Two participants were unable to com-

plete even the first study task in the allotted time and were excluded from our analysis,

leaving 32 participants who had completed one or more of the three study tasks.

In this between-subjects study we asked participants to continue an analysis

which a fictional lab-mate had begun in a Jupyter Notebook. At the start of the study we

gave each participant a 13” laptop with a notebook that compared housing and rental

prices in five major cities on the United States’ west coast. We then asked participants

to perform three tasks that compared housing and rental prices in these cities to those

in San Jose, CA. The three tasks were:

1. Get the unique name/id that the data uses to identify San Jose, CA

2. Plot rental and home prices in San Jose over time

3. Correlate changes in rental and homes prices in San Jose with changes in rental

and home prices in the other five cities.

Sixteen participants used standard Jupyter Notebook in the control condition
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Figure 4.2: The example notebook comparing housing prices used in Study 1. Partic-
ipants in the baseline condition used the fully expanded notebook on the left whereas
participants in the experimental condition used the notebook collapsed with Janus on
the right. While the collapsed notebook was initially much shorter than the expanded
one, all hidden cells could still be accessed by clicking a header for each section of hid-
den cells.

and sixteen used Jupyter Notebook extended with Janus in the experimental condition.

Participants in the experimental condition were first shown Janus’ features in an ex-

ample notebook, and then worked with a collapsed version of the study notebook in a

version of Jupyter Notebook extended with Janus. Hiding most of the code in named

sections made this notebook about 80% shorter (Figure 4.2) than the control notebook,

though all hidden cells were accessible by clicking on a labeled section header, which

would open the cells in Janus’ sidebar. In the control condition these sections were

labeled with inline markdown headers. To encourage extensive navigation and en-

gagement with the notebook, the tasks were designed to be completed by reusing code

already in the notebook. We did not test Janus’ history features in this study as I felt
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they would be more beneficial for analyses spanning days or weeks than those lasting

an hour or less.

We gave participants 30 minutes to complete as many of the three tasks as they

could. At the end of the study we interviewed each participant about their experience

using their version of Jupyter Notebook, and had them fill out a post-study question-

naire testing their notebook comprehension.

4.4.2 Measures

Proficiency: Before the study began, we asked participants to rate how proficient

they were analyzing data using Python and working with Jupyter Notebook on 7-point

likert scales. we also asked participants how many years programming experience they

had and their major. Due to their systematic differences in self-rated data analysis pro-

ficiency, we divided participants into computing majors (e.g., Computer Science, Com-

puter Engineering, Electrical and Computer Engineering), and non-computing majors

(e.g., Cognitive Science, Bioengineering, Chemical Engineering) and balanced major

type across conditions.

Navigation and Comprehension: At the end of the study we asked participants

to rate how easy it was to navigate and understand the notebook on 7-point likert

scales. We also tested their comprehension of the notebook using a 7 question quiz

which asked about methods and high-level results. For example, one question asked:

Which cities did your colleague originally compare?

Productivity: We measured how productive participants were by tracking how

many of the three tasks they completed and how long it took them to complete each

task.
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4.4.3 Results

We compared programming proficiency between computing and non-computing

majors using t-tests. For all other measures we use two-way ANOVAs to estimate dif-

ferences associated with using Janus, the participant’s major, or the interaction of these

factors. We report 95% confidence intervals for effects with a p-value less than 0.10,

though for this formative study we were more concerned with users’ perceptions and

interactions with Janus than statistical significance.

Proficiency: Sixteen participants were pursuing a computing degree and sixteen

a non-computing degree. While there was a range of programming experience within

each group, there were significant differences between them in self-reported proficiency

using Python for data analysis (4.1 vs 3.1 out of 7, p < 0.01), self-rated proficiency with

Jupyter Notebooks (4.6 vs 3.6 out of 7, p < 0.05), and years of programming experience

(3.3 vs 2.3 years, p < 0.01). These differences are robust enough to suggest that comput-

ing and non-computing majors might use Jupyter differently based on different levels

of programming experience.

Navigation and Comprehension: There was no significant difference in self-rated

ease of navigating the notebook, self-rated ease of understanding the notebook, or

scores on the poststudy comprehension quiz associated with using Janus, pursuing a

computing degree, or the interaction of these factors ( p > 0.1 in all cases).

Productivity: There was no significant difference in the number of tasks partic-

ipants completed associated with using Janus, pursuing a computing degree, or the

interaction of these factors (p > 0.1 in all cases). However, there were differences in

how long participants took to complete each task (Figure 4.3(a)). A two-way ANOVA

revealed that non-computing majors using Janus tended to take longer reviewing their

collaborator’s notebooks before starting the tasks than did other participants (p = 0.09,

95% CI [-69, 986] seconds longer). Note in Figure Figure 4.3(a) that this difference seems

largely driven by three outliers. We return to this explanation in the discussion.
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(a) (b)

Figure 4.3: Task performance with Janus. (a) Non-computing majors using Janus
tended to spend significantly more time reviewing the notebook before starting the first
task, though this was mostly due to three outliers. (b) However, Janus users tended to
take less time to complete Tasks 1 and 2, particularly if they were non-computing ma-
jors. Note how seven of the eight fastest times on Tasks 1 and 2 were from Janus users.

Despite potentially taking longer to review the notebook, there was also a re-

verse trend for non-computing majors using Janus to surprisingly take less time to

complete the first two tasks (Figure 4.3(b)). We compare time spent on the first two

tasks as 24 of 32 participants were able to complete Tasks 1 and 2 in the alloted time

but only 13 were able to complete all three, limiting our ability to make a comparison.

A two-way ANOVA represented this difference as a combination of a weak main effect

for all Janus users to take less time to complete Tasks 1 and 2 (p = 0.09, 95% CI [92, 996]

fewer seconds), but also a weak interaction effect for computing majors using Janus to

take longer on Tasks 1 and 2 than non-computing majors using Janus ( p = 0.10, 95%

CI [-102, 1126] more seconds). This combination of effects nullified any time gain from

using Janus for computing majors, but preserved it for non-computing majors. Analyz-

ing Tasks 1 and 2 separately revealed a similar trend with non-computing majors using

Janus taking less time.

Qualitative Feedback: In the baseline condition with Jupyter Notebook, seven of

sixteen participants mentioned the length of the notebook as a problem when asked
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about ease of navigation. Some even proposed new ways of making the notebook easier

to navigate:

I wish there was some type of compressing tool. I did not have to see all

these plots to be able to understand the next step. So if there is anything

that hides the plots and expands it only when I want to see it. I feel tools

like that would make it easier to navigate. — P32

In terms of difficulty, definitely the length. It would be really nice if there

was some sort of breaking, [or] pages. You know? Each of these sections,

if you could while you’re making the notebook be like, “new page”, but

still be in the same notebook. Because you know, a real notebook has

pages. That’s an ongoing gripe for me with Jupyter Notebooks. — P21

Of the sixteen participants who used Janus, ten spoke favorably of the extension.

I like the hide cells thing. I never really explored that. If that’s not already

a thing in Jupyter, I hope it’s a thing... When I’m trying to find a certain

portion of the notebook it would be easier to just hide the portions I don’t

need currently. — P29

I liked how it was, how the lines were condensed. And [how] I could

have it on a separate side, [how] it was divided, or split screen. I get to

see [the code] as I’m looking at the whole file... So I can see what steps go

after and I can get the summary of it. — P23

However, five Janus of the sixteen users felt the hierarchy hindered navigation

at times or at least took some getting used to:

It’s difficult... In a regular notebook you can just scroll up and down and

see the code but here if you want to see you have to actually click it, so

it’s not as efficient as it used to be. — P11
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For the most part I’d say it worked fine. It’s just small things personally

that I’d say that I wasn’t used to. I definitely enjoyed the hide output

[feature]. — P25

Participants in the Janus condition also discussed various ways to improve the

extension. Four mentioned wanting the sidebar to be less “cramped” either by using

a larger screen or showing hidden cells inline with the main notebook. Three wanted

the sidebar to follow them as they scrolled so they could view code from the top of

the notebook while making edits to a cell at the bottom of the notebook. Finally, eight

participants mentioned using browser search (e.g., CMD - F) to navigate the notebook

and wanting better support for code search in Janus.

4.4.4 Discussion

Many of the sixteen participants who used Janus quickly adapted to and liked

being able to hide and navigate between sections of the notebook. On the other hand,

many of the participants who used the current version of Jupyter Notebook complained

that the notebook was long and hard to navigate. Together these results suggest there

are clear benefits to adding hierarchy to computational notebooks. However, there may

be times when analysts want to see the entire notebook at once, or to rapidly scroll

between and compare code in multiple sections. Based on this feedback I redesigned

Janus to allow users to look at multiple sections of hidden cells in the sidebar at a time.

Remarkably, using Janus also seemed to help non-computing majors take less

time to find and reuse code in the notebook, though it may have also encouraged them

to take longer reviewing the notebook in the first place. Examining how participants

edited their notebooks gives some clues as to why this was the case. In short, using

Janus seems to have encouraged participants to adopt different programming strategies

than standard Jupyter users.
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First, as shown in Figure 4.3(a), the trend for non-computing majors using Janus

to take longer to review the notebook is largely due to three outliers. These participants

all wanted to see the entire notebook unfolded before they began their analysis and took

time to show and re-run each section of hidden cells in the main notebook, retracing

their colleagues’ entire analysis before beginning their own. Since Janus lacked a “Show

All Hidden Cells” button, this was a tedious process. Alternatively, it may be that by

breaking long analyses into sections, Janus makes the analysis seem more approachable

and encourages users to retrace each section of the analysis rather than just gloss over

them.

As for Janus enabling users, particularly non-computing majors, to take less time

to complete their tasks, consider the bottom third of Figure 4.3(b) where seven of the

eight completion times under 500 seconds were from Janus users. Reviewing screen

recordings revealed that these faster times may be due to adopting a strategy of mak-

ing small edits and re-running cells in the middle of the notebook rather than copying

and pasting code to the end of the notebook. Five of these eight participants with the

fastest times adopted this in-place editing strategy whereas only three of the remaining

sixteen participants who completed Tasks 1 and 2 did so. This effect was particularly

pronounced for non-computing majors because many computing majors were still able

to complete Tasks 1 and 2 relatively quickly in the baseline Jupyter condition by falling

back on well-established strategies for navigating long files such as using CMD-F to

search for specific function names. The four Janus users at the top third of Figure 5 who

took more than 900 seconds to complete Tasks 1 and 2 all took a third approach: writing

entirely new code to complete the tasks rather than reuse code already in the notebook

as was intended.

Using Janus then seemed to have a polarizing effect on programming style, ei-

ther encouraging participants to edit and re-run code in place or to ignore previous code

and start their analysis from scratch. In the baseline Jupyter condition more participants
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took the strategy of reusing code already in the notebook by copying and pasting it to

the end of the notebook where they could modify it without overwriting previous an-

alytical steps. Future work will need to explore why adding a simple hierarchy may

influence programming strategy. It may be that viewing code in smaller chunks gave

participants confidence that they understood the code and the consequences of modi-

fying it, so they were more likely to edit code in place than their peers in the baseline

Jupyter condition who saw the entire analysis at once. In other cases, hiding sections of

cells may also have encouraged participants to overlook aspects of prior work and thus

recreate it. Either way, using Janus helped novice analysts skim and access sections of a

collaborators’ notebook without having to constantly scroll through sections unrelated

to their current task.

4.5 Study 2: Technology Probe with Expert Analysts

The first study in this chapter demonstrated that adding hierarchy can help

novice analysts navigate and extend a collaborator’s computational notebook. How-

ever, extending an existing analysis is just one form of collaboration, and analysts might

use history and hierarchy differently in their own notebooks, especially if they have

substantial experience with notebooks. To better understand how analysts use compu-

tational notebooks to support collaborative data analysis, and how history and hierar-

chy might support these uses, I had three expert analysts use Janus for two to three

weeks during their everyday analyses. I had three goals for this technology probe [47]:

understanding analysts needs and desires in a real-world setting, field-testing Janus,

and inspiring analysts (and ourselves) to think about new ways of interacting with

computational notebooks.
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4.5.1 Methods

With the help of a research assistant I recruited three analysts (2 PhD students

and 1 undergraduate student) via email from three different laboratories at a large pub-

lic university in the United States. All three had extensive experience with Jupyter

Notebook, using it to model antibiotic resistance, neural spiking behavior, and the

structure of proteins.

We demonstrated Janus to each participant at the start of the study using an

example notebook and then asked each to clean the housing price comparison notebook

from Study 1 (Figure 4.2) as if they were going to share it with a colleague. Afterwards

we asked them how they might have cleaned the notebook differently for themselves

or a manager. After the cleaning task, each participant installed Janus on their primary

work computer and used it for a period of 2-4 weeks during their everyday analyses.

Participants could use a commenting tool built into Janus to leave in-situ feedback if

they encountered a bug or an interesting use case. We interviewed each participant

about their experience with Janus after each week of use.

Our primary data came from weekly interviews. Sample questions included:

1. Can you open a notebook where you used Janus this week? How did you use, or

try to use, Janus in this notebook?

2. Were there specific moments where you wanted Janus to help you do something,

that it could not?

3. Did you show a notebook organized with Janus to anyone this week? If so, how

did they respond?

We transcribed each interview and iteratively extracted and grouped key quotes

to find themes.
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4.5.2 Results

I organize results by the three goals of technology probes: Social, Technological,

and Design.

Social: Communicating with Self and Others.

Whether they were cleaning our example notebook or their own notebooks, our

participants expressed the feeling that they were their own closest collaborators, and

that other analysts, especially their advisors (sometimes referred to as Principle Inves-

tigators or PIs), were not interested in their code, though a fellow student or post-doc

might want to see portions of their code from time to time.

Oftentimes I am the colleague in the sense that I’m looking at [the note-

book] a week after and I have no idea what I was thinking at the time. —

P1

My PI is not a coding person... he wants to know what’s going on and he

wants to see the graphs. — P3

From most of my conversations with people that’s pretty consistent across

PIs. They don’t want to see the code, they just want to see the high level

idea. — P1

As a result, our participants primarily considered their own needs when clean-

ing notebooks and used other media to share results, though often reluctantly. Our par-

ticipants focused on the difficulty of using notebooks to present results during weekly

lab meetings.

When I’ve presented versions of this notebook in our weekly meetings,

I’m always scrolling through and it takes a while to scroll through some-

thing and I might think, “Oh I want to go back to this plot above”, and
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I scroll scroll, scroll, scroll and people are getting distracted by various

plots. — P1

My notebooks are slightly markdown lite. I don’t have much deep anal-

ysis of what I’m doing. If someone else walked into this notebook they’d

probably have a pretty hard time figuring out exactly what’s going on and

why this graph is interesting. — P2

Its all slide decks now. We’ve tried... I haven’t had much success using

notebooks as a presentation tool. I’ve just kind of given up on that. — P3

However, using Janus opened up new possibilities, both to aid an ongoing anal-

ysis, and to aid communication with collaborators. When working on an analysis, Janus

helped our participants keep old code without it getting in the way of the current task.

Keeping this code could even help them resume the analysis later:

The reason I got excited about [Janus] is we have these huge notebooks

all the time, and you don’t want delete stuff that you did cause you want

to come back and try to remember what you did later on. But, when

you’re working on it, it’s just like, after a while you have to start scrolling

through all this stuff and... it just gets tedious — P3

What I would have normally have done was cut it out, just delete that

cell completely, and just think in my head, “Oh that line was super easy

to type, if I want to see that selection again, I’ll just type that same line

again.” But... I’ll forget to do that later... [with Janus] instead of having to

retype it I could just kind of see “Oh, what section of the data-frame was

I looking at before?” That will kind of jog my memory. — P2

Another participant mentioned that using Janus helped him make sure he was

editing the correct plot. Whereas before he would often mistake two similar plots, now

he could hide all but the current plot he was working on. In his words:
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The feature of hiding the output is, I love that feature and obviously that

has become a central piece of my notebook. — P1

Our participants also felt that using Janus helped them focus their own and col-

laborators’ attention on the most important parts of the analysis and encouraged them

to think about expected results by initially hiding all results so they didn’t absentmind-

edly scan for results without reading explanatory text first.

I can just kind of quickly scroll through [the notebook] and know that

every cell that is still left is a cell that I wanted to show for some reason

— P2

I feel like when you have these notebooks with all these figures its really

tempting to just scroll down until the next figure and just look at it and

scroll down... its a nice experience [with hidden outputs in Janus] for me

or a collaborator to say, “Okay, what is it that I’m looking for, what do I

expect to see?” — P1

Beyond fostering deeper engagement with the analysis, our participants felt that

using Janus also made it easier to reuse their notebook in multiple contexts without

much additional work. This contrasted with needing to make slide decks to summarize

results for lab meetings or spending significant time cleaning notebooks before sharing

them publicly online.

I’m actually going to be presenting this notebook today to the group that

I’m working with and I’ve been very excited about this feature because...

when I’ll be presenting it on the projector it gives me a lot more control

over what people are seeing. — P1

I can just throw [incomplete/buggy code] to the side, that way I don’t

need to have a development notebook and a presentation notebook. I can
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kind of just have it all mixed into one and throw stuff to the side when I

don’t want people to see it. — P2

Surprisingly, none of our participants used the cell or notebook history tools.

It may be that these tools are most useful for longer-term analyses, that they do not

present a useful representation of past analytical history, or were poorly named. Two

participants thought the cell history feature was most useful not for passively tracking

history but for purposefully saving interesting model or graph variants, especially if

those models or graphs took a long time to create.

I think [the cell history] could be named a little better and maybe that

would help people be encouraged to use it... I think that it’s a really handy

tool. — P2

Technology: Sidebar Unnecessary Technical Overhead.

Janus was robust enough to support daily use, though users did encounter a few

bugs which we corrected during the study. As in Study 1, one of our participants men-

tioned that the sidebar felt small. He rarely viewed hidden cells there, choosing instead

to hide and show them in the main flow of his notebooks. While we expected more

experienced analysts would use external monitors, giving more space for the sidebar,

our participants still frequently edited notebooks on their smaller laptop screens as they

moved around campus to attend different meetings. This same participant also men-

tioned that the animations used to open and close the sidebar were distracting whereas

those used when hiding and showing cells in the main notebook felt more natural.

While we intended for the main notebook to provide an overview of the analysis,

and the sidebar to provide details-on-demand, analysts’ repeated critique suggests that

hiding and showing cells in-line with the rest of the notebook may better match their

mental models and be less distracting. Removing the sidebar would also have made
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Janus easier to implement. Jupyter Notebook updates its underlying JSON data struc-

ture based on cells rendered in the main notebook DOM element. Since the sidebar cells

were rendered outside this element, much of Janus’ code was devoted to linking and

synchronizing sidebar cells with duplicate cells hidden in the main notebook’s DOM.

Design: Support for Navigation and Manipulation.

Participants were generally happy with Janus and mainly suggested minor tweaks

rather than complete re-imaginings of the notebook metaphor. However, our inter-

views, as well as observations from Study 1, highlight several use cases that compu-

tational notebooks could better support. Many of these use cases are similar to those

explored in the active reading [61, 77, 94] or collaborative visual analytics literatures

[36], though they reflect the unique needs of analysts and their collaborators as they

read, review, and reflect on analytical code and commentary in notebooks.

Richer Visualization of Hidden Cells: In the current version of Janus, sections of

hidden cells are summarized by a user-defined labels and the number of lines of code

they contain. When users hover over the hidden section, they see a small preview

of the hidden cells. While analysts sometimes know the exact cell they are looking

for (e.g., where was that one with the plotting code?) at other times they are looking

for all cells where a particular data object was manipulated and trying to understand

what happened to that object as a result of the code. Hidden section markers could

provide information about the objects created, modified, or deleted in them and provide

compact visualizations of those operations.

Inline Search and Notebook Summarization: Analysts often looked for all instances

of a variable or method, or the history of how an object was created, used, and modified.

This process could be accelerated by letting notebook users search for a data object, and

then hiding all cells or lines of code except those pertaining to the searched object.

Showing Notebooks Sections Next to Each Other: Analysts often compared disparate
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sections of the same notebook, for example when copying code or comparing results of

two different steps. Currently this requires precise and repetitive scrolling. JupyterLab,

the next version of Jupyter Notebook addresses this issue by letting users place two

versions of the same notebook side by side. Alternatively, notebooks could let users

collapse intermediate sections of a notebook (as in LiquidText [94]) to show two dis-

parate sections one right after the other.

Saving Views: Analysts wanted to view different parts of their notebooks at dif-

ferent times, and to save configurations to show collaborators. Similar to how some

collaborative visual analytics systems enable users to save configurations of the visual-

ization [39, 101], notebooks could enable users to save configurations of hidden cells so

they can prepare and easily revert to specific configurations.

4.6 Discussion

The findings from these two studies with Janus suggest it would be fruitful to

consider how computational notebooks can support richer forms of navigation and ma-

nipulation. As opposed to the linear and often passive process of reading a novel, an-

alysts and their collaborators want to actively skim, cross-reference, bookmark, and

jump around computational notebooks as they do other physical and digital docu-

ments. However, in their current form, computational notebooks require extensive

scrolling to navigate and are difficult to skim. While participants had some workarounds

(e.g., using third-party extensions to render a table of contents at the top of their note-

book, or using an ALL-CAPS header to mark where they left-off), notebooks could do

more to support richer navigation and manipulation. The primary benefit from using

Janus seemed to be providing a lightweight means to dynamically reorganize and nav-

igate notebooks in ways that supported the task at hand.

Some computational notebooks such as Observable, Iodide, and JupyterLab are
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experimenting with allowing users to hide all code cells at once, leaving just textual

description and results. While this may provide a quick and easy way to “clean” note-

books for certain uses, many use cases are not supported. For example, participants in

our technology probe selectively hid all but a few code cells to help them focus during

a development task, hid only cells with experimental or broken code during a note-

book code review with a colleague, and then hid all code cells when presenting work in

their weekly lab meeting. Future work might explore analysts’ varied motivations and

strategies when cleaning their notebooks to support different activities.

So far Janus supports a limited form of navigation, mainly helping analysts and

their collaborators jump around long notebooks by hiding sections they do not need

to see at the moment. However, as Tashman and Edwards note in related literature

on active reading, richer forms of interaction can also include annotation, content ex-

traction, and dynamic layout of documents [94]. As with systems such as XLibris [77]

and Papiercraft [61], computational notebooks have potential to support these activities

in ways that paper cannot, for example automatically searching for all portions of the

notebook that depend on a highlighted block of code.

Support for navigation and manipulation can also extend beyond a single doc-

ument. As Chen et al. note, there are several levels of interaction to support beyond

an individual document including multi-document workspaces and support for multi-

session reading [11]. In addition to supporting interactions with a single notebook,

computational notebook software could also support multi-document sorting, layout,

and information extraction as well as saving and restoring multi-document workspaces

to support reading across sessions and even between collaborators.
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4.7 Conclusion

The rapid adoption of computational notebooks demonstrates their usefulness

for analysis and their potential to encourage open science with increased sharing of data

and analyses. Key to fulfilling this potential is enabling and encouraging clear commu-

nication about the goals, methods, and results of analyses. Although computational

notebooks are enticing vehicles for open science, much work remains to enable them

to realize their full potential as a medium for effective communication and sharing of

interactive and reproducible analyses.

In this chapter I explore how computational notebooks might be designed to

encourage clearer communication by developing and testing Janus, an extension to

Jupyter Notebook that adds history and hierarchy to the notebook. Through a for-

mative study with 32 undergraduate data science students I demonstrate that adding

hierarchy to computational notebooks can help novice analysts more easily navigate

and extend an analysis in an existing notebook. In a second study, a multi-week tech-

nology probe with three expert analysts, I found that although analysts infrequently

used Janus’ notebook history tools, the ability to hide content and add hierarchy to

notebooks aided both the ongoing analysis and later communication by supporting

varied navigation and manipulation behaviors.

Future research should explore how computational notebooks and other forms

of computational media can support richer forms of navigation and manipulation to

help analysts and their collaborators deeply engage with complex data analyses.

4.8 Synthesis

This chapter presents the design and testing of Janus, a Jupyter Notebook ex-

tension enabling analysts to add history and hierarchy to their notebooks. Its main
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contributions are:

1. Evidence suggesting that adding hierarchy to notebooks enables less experienced

programmers to extend a colleague’s analysis more quickly

2. Evidence that adding hierarchy to analysts notebooks supports both the ongoing

analysis and later communication of experienced analysts

3. Theoretical perspective that providing a lightweight means to dynamically re-

organize and navigate notebooks reduces the tension between exploration and

explanation by making it easier to tailor notebooks to the task at hand

4. A prototype Jupyter Notebook cleaning extension, Janus

This chapter, in part, includes portions of material from Aiding Communication of

Complex Data Analyses in Computational Notebooks by Adam Rule, Ian Drosos, Aurelien

Tabard, and Jim Hollan, as it was submitted to the 2018 ACM international conference

on Computer Supported Cooperative Work. The dissertation author was the primary

investigator and author of this paper. Esan Hassanzedah and Evan Schmitz assisted

with running the design workshops and Ian Drosos assisted with running the formative

study and technology probe.
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5 ActiveNotes: Interactive Notes for

Clinicians

Whereas prior chapters explored the design and use of computational notebooks

for programming-based data analysis, this chapter investigates a broader paradigm

of using computational notebooks to support data-driven activities without us-

ing a general-purpose programming language. Specifically, this chapter presents

an exploratory analysis of how clinicians might use free-text to place medica-

tion orders from within a clinical note. This work takes the approach of using a

domain-specific language to enable clinicians to perform actions within a note.

5.1 Introduction

The previous two chapters explored how the design of computational notebooks

might encourage analysts to document and share their work so others can understand,

reproduce, and extend it. Computational notebooks such as Jupyter Notebook and R

Notebooks, while powerful, require users to be familiar with a general-purpose pro-

gramming language such as Julia, Python, or R. Despite the millions of data analysts

and end-user programmers who might use computational notebooks in this way [83],

there are even more professionals performing data-driven activities who have little

or no programming experience. These include nurses and physicians, city planners,
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lawyers, engineers, and educators. How might computational notebooks support their

work? This chapter begins to address this question by examining the specific scenario

of how computational notebooks might help clinicians place medication orders from

within a clinical note. This work demonstrates how computational notebooks can sup-

port data-driven work for a broader range of people by using a domain-specific lan-

guage to specify or interact with data.

5.2 Background: Fragmented Medical Records

Medicine has experienced an influx of digital data in recent years due in large

part to government incentives to adopt Electronic Health Records (EHRs) [102]. Radi-

ology images once stored on film now live on hard drives and medication orders once

written on paper are now routinely placed via computers. One consequence of this

mass digitization has been a rapid rise in the amount of information clinicians and are

expected to manage. While the field of biomedical informatics is dedicated to orga-

nizing data so clinicians and computers can process and act on it [86], recent studies

suggest that front-line clinicians still lack adequate tools to manage, make sense of, and

act on the growing flood of patient data [24, 73].

This is partially due to the current separation of structured and unstructured

data in Electronic Health Records (EHRs). With paper records clinicians often wrote

short notes summarizing a patient visit such as “ ‘feeling tired’, Depressed, Librium

(30) (5mg)”. These concisely conveyed a patient’s symptoms, the physician’s diagno-

sis, and treatment plan [35]. Today, many EHRs organize patient data by information

source (e.g., labs, radiology, medications, notes) rather than by problem (e.g., diabetes,

hypertension, glaucoma) [103] or encounter. Under this scheme symptoms (e.g., feeling

tired) are displayed on a separate screen from diagnosis or treatment. This fragmenta-

tion makes it difficult for clinicians to make inferences across data types without jump-
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ing around the record to extract information from disparate sections [110], a process

some refer to as “chart biopsy” [41].

Clinicians also struggle to make sense of and act on patient data due to “note

bloat” [34, 42]. Clinical notes were originally intended to concisely summarize a pa-

tient’s care. While clinical notes still serve this purpose — and are where clinicians

spend the majority of their EHR time [9] — most are bloated with irreverent and du-

plicate information included to fulfill billing and legal requirements. In many notes the

majority of text was auto-populated from a template, or copy-pasted from another note

rather than reflecting a concise and up-to-date summary of the clinicians’ findings, rea-

soning, and plan. Consequently clinicians spend much of their time scrolling through

long, poorly formatted notes looking for a sentence or two of interest [110].

Clinicians also struggle to make sense of and act on patient data due to the way

current EHRs separate documentation from action. While clinicians typically document

their treatment plan in a clinical note, they need to go to an entirely different part of the

EHR to actually place the orders to carry out that plan. If they want to reference a

lab value while writing a note, they either need to go look up that value on a separate

screen, or use a “smart phrase” to auto-populate that value into the note, often along

with a host of boilerplate text and irrelevant values. This separation of data entry, ac-

cess, and action means physicians are often jumping around the record as they work,

documenting information in multiple places, or delaying documentation. Hospitalist

physicians often place orders for their patient’s care immediately after morning rounds,

but wait hours or days before writing the progress note explaining why they chose that

line of care [10, 97], potentially delaying future care.

Poor EHR usability is a major cause of physician burnout [31] and dissatisfaction

[24] and contributes to many physicians spending more time in front of their computers

than in front of their patients [93]. The major EHR vendors have largely addressed

these issues with EHR usability by making it easier to pull structured information into
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clinical notes, or letting clinicians split their screen to show two portions of the same

record side by side [1, 3]. Improvements to EHR usability can allow clinicians to spend

less time on the computer and more with patients [31], but prior research has largely

focused on auto-populating critical information into clinical notes or helping clinicians

copy information across the record [32], though in some cases with intelligent linking

and alerting of clinicians when critical values change [105].

However, little attention has been paid to the opposite conversion of creating

structured data from note text in real-time or of letting clinicians take actions from

within a note [16], though this concept is intimately connected to previous work on

information retrieval. For example in [105], one participant remarked after using a fea-

ture to search for and copy patient information into a note that they would “like to

place orders for medications and tests” from within the note. This note-centric vision

of EHRs is in many ways motivated by the same principles that led to the rise of com-

putational notebooks: a desire to unify the many byproducts of a data-driven activity

and a need to more closely tie explanations of that activity to the artifacts used to carry

it out.

This chapter explores how the divide between documentation and action in

EHRs might be reduced by enabling clinicians to mix the two in their clinical notes.

The ultimate vision of this line work is to develop an EHR paradigm using interac-

tive progress notes to unify entry, access, and retrieval of structured and unstructured

patient information. However this chapter focuses on a much smaller part of this note-

centric vision: enabling clinicians to place medication orders from within a clinical note

using free-text. The particular research questions I address in this chapter are:

1. What shorthand do clinicians use when placing free-text medication orders?

2. What functionality do clinicians expect from computerized free-text order entry?

3. Do clinicians see free-text order entry as a useful addition to their clinical notes?

77



Beyond addressing these specific questions, this chapter also illustrates a broader

vision of using computational notebooks to support users with little or no program-

ming experience. While there may be numerous approaches to developing computa-

tional notebooks for non-programmers, this chapter takes the approach of leveraging

a domain-specific language (DSL) to parse text or perform actions in the context of a

free-text note. In this research the computational nature of the notebook only involves

parsing free-text to create a structured medication order to be passed to another part

of the medical record and the DSL involved in mainly a markup language. However,

a similar interaction of parsing free-text could be used to perform other computations,

such as retrieving and plotting a patient’s recent vital signs directly in the note [105].

Moreover this chapter demonstrates an approach to mixing explanatory and actionable

text that does not rely on the cell-based organization of current computational note-

books but relies on “tagging” actionable text within a stream of explanatory text.

5.3 ActiveNotes Prototype

To explore the feasibility of free-text order entry, I, along with a team of collabora-

tors, helped develop ActiveNotes (Figure 5.1). My efforts focused on interaction design

and testing while my collaborators set requirements, developed application infrastruc-

ture, and helped run the study described in this chapter. ActiveNotes is a clinical note

editor that lets clinicians create, modify, and delete notes. Like most EHR note editors,

there are no facilities for rich-text formatting such as bolding or font selection.

ActiveNotes’ main strength is in its ability to parse semi-structured text into full

medication orders. To start an order, users type the text “#med” anywhere in their note

which opens a small order specification dialog on top of the note (Figure 5.1A). This

window provides a search bar where clinicians can type their order. Following medi-

cation ordering convention ActiveNotes expects the medication and dose information
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Figure 5.1: ActiveNotes in use. (A) The main note editor after an order has been started.
A search box appears wherever a user types “#med” in their note. (B) The box provides
auto-completion for drug names. (C) Medication order components are highlighted
after ActiveNotes’ recognizes them. (D) Users can use an order template if needed.

to be entered first and provides auto-completion for these fields (Figure 5.1B) based on

an underlying medication database built around RxNorm, a medication ontology [5].

As text is entered in the search field, it also appears in the note wherever the #med

tag was invoked. After entering the medication and dose fields, the order is complete
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enough for checkout and clinicians can hit their “Enter” key to finish the order, which

closes the order specification dialog. Alternatively, users can continue to specify other

aspects of the order such as form, route, schedule, refills, etc. As each part of the order

is recognized, the dialog highlights the components’ corresponding label in blue in the

popover window (Figure 5.1C). Users can also access an order specification drop-down

menu by clicking the triangle to the right of the search box (Figure 5.1D).

After a medication is specified through the dialog, it can be edited or deleted

through an action menu that appears when users right-click or hover over the order

text. Anticipating future uses of ActiveNotes, we have developed order specific tasks

including refill, reorder, and discontinue that can all be accomplished in a single click.

Once finished with their note, users can click the “Rx” symbol above the note to

go to the “Order Checkout” page to review and sign any orders they placed (Figure 5.2).

This page is pre-populated with medication orders from the note. Here, ActiveNotes

asks for any additional information needed to fully specify the order and also fills in

default values for some fields that were not specified in the note, such as pickup location

or number of refills. ActiveNotes currently supports only medication orders but could

be expanded to support orders for lab tests, imaging, and consultations.

Figure 5.2: ActiveNotes checkout screen where orders can be reviewed and edited be-
fore being signed. The red box highlights missing information.
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5.4 Evaluation

We tested ActiveNotes with eight clinicians from San Diego’s Veterans Affairs

hospital and UC San Diego Medical Center. Clinicians’ specializations included inter-

nal medicine (3), infectious diseases (4), and surgery (1). Our participant pool included

both inpatient and outpatient practitioners, ranging from fellows to senior clinicians.

Each test lasted 30 minutes or less. Clinicians were first shown a short video explain-

ing ActiveNotes’ features. They were then given two short descriptions of canonical

outpatient visits and asked to create a progress note for each visit in ActiveNotes. Each

scenario gave basic demographic and assessment information and asked the clinicians

to place four new medication orders from within their note. The orders were largely

phrased without standard shorthand (e.g. PO, BID) so we could observe the shorthand

clinicians used naturally. After completing both progress notes, we asked the clinicians

to comment on their experience with ActiveNotes. We tracked how long it took clini-

cians to successfully place each order, the shorthand they used while placing each order,

any unsupported attempted uses of the system, and participants’ comments on desired

features as well as the overall usefulness of ActiveNotes.

5.5 Results

Time to Order: Clinicians took, on average, 59 seconds to place each order, though

this time varied greatly between clinicians and orders. For example, one clinician aver-

aged just 30 seconds to place each order whereas another averaged 1 minute 56 seconds.

Also, it took clinicians an average of just 39 seconds to place an order for “Simvastatin

20mg PO at bedtime daily 30 tablets to be dispensed with 3 refills” whereas it took

an average of 1 minute 17 seconds to place an order for “Aspirin 81mg once daily 100

tablets to be dispensed with 3 refills”. Time to order also depended on whether the
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clinician initially used shorthand that ActiveNotes recognized. For example, whereas

ActiveNotes could parse “#30” as quantity information, it could not parse “Dispense:

30”. The orders that took the longest to complete were those in which clinicians tried to

use several different shorthands that ActiveNotes did not recognize and then resorted

to using the drop-down order specification menu (accessible by clicking the triangle

to the right of the search box). Since one of our main objectives was to identify the

shorthand clinicians naturally use, we did not tell clinicians what type of shorthand

ActiveNotes was programmed to recognize and let them decide when they wanted to

fall-back on the drop-down menu.

Shorthand: Clinicians used a variety of shorthand when placing free-text orders.

Representative examples are shown in Table 5.1. Whereas the medication, dose, form,

route, and days fields saw little variation, schedule, quantity, refills, and pickup infor-

mation was entered in a number of different ways.

Table 5.1: Shorthand used when placing orders
Information Shorthand

Medication Aspirin, asa (abbreviation)
Dose 100mg, 75mcg
Form tab, enteric coated
Route po, oral

Schedule bid, at bedtime, once a day, 1x/day, prn for dizziness
Days 30 days

Quantity #30, qty 30, Dispense: 30
Refills rf, no refills, refills 3, one refill

Pickup pick, mail, to be mailed, pickup at clinic, pickup window

Functionality: As is common with prototypes, our participants wanted ActiveNotes

to support additional functionality. We particularly valued this feedback since expected

functionality can guide future development. There were six recurring function requests;

the first three regarded time saving assistance while the last three address broader inte-

gration with the EHR. These included:
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1. Default Values: Five clinicians wanted ActiveNotes to have default values for

fields like schedule, refills, and pickup. While ActiveNotes’ checkout window

defaulted to “3 refills” and “Window” pickup, it did not have a default value for

schedule. Moreover, there was no way to see, when placing an order in the note,

that ActiveNotes would default to these values in the checkout window.

2. Auto-populated Values: Four clinicians wanted ActiveNotes to automatically pop-

ulate form and quantity information whenever possible. For example, ActiveNotes

could automatically mark ’Tab’ if the specified medication and dose could only

come in a tablet form. Based on a schedule and duration of “BID for 30 days”,

ActiveNotes could also automatically assign a quantity of 60 tablets.

3. Order Entry Invocation: Four clinicians wanted a simpler way to invoke the order

entry window than the “#med” syntax. Clinicians either wanted to type out the

full order and then hit a hotkey to tell ActiveNotes to parse the preceding text,

or only wanted to invoke the “#med” command once per note and then fill out

multiple orders in a row.

4. Additional Orders: Three clinicians expected ActiveNotes to handle additional

order types including radiology, labs, and consults.

5. Additional Parsing: One clinician wanted ActiveNotes to be able to parse other

note text, such as active problems, and save it to the appropriate part of the EHR.

6. Information Retrieval: Two clinicians wanted ActiveNotes to support rich infor-

mation retrieval such as “retrieve most recent colonoscopy”.

Usefulness: Clinicians saw the current implementation of ActiveNotes as useful

in two distinct ways. First, they thought it was useful to not have to switch between

sections of the EHR to document and place orders. As one clinician remarked:
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I love not having to go out of the screen [to place orders] — P1

Secondly, clinicians saw directly linking orders to documentation as a way to

avoid overlooking orders:

The thing that I really like about this is... having the order directly tied to

the documentation of that order in the note. The issue I run into some-

times is that I write my note and I’m waiting to do my orders and then I

have to... make sure... all the things I said I was going to do in the note I

actually order. — P3

More broadly clinicians saw value in using interactive notes to populate the EHR

with structured information:

If this had the ability to take everything in the note and just automatically

download it... if you just did like #activeproblems from the note it would

just put it all into that section... that would dramatically improve effi-

ciency because there’s a lot of that duplication that we’re currently doing.

— P7

This is opposed to the current model of importing structured information into

the note:

As it currently stands, it’s the opposite. You have to first put in everything

in the active problem list or medication list, and then you can populate it

into the note by using smart keystrokes, but it would be nice when you’re

initially seeing someone to not have to write the whole note and then

repeat everything — P7
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5.6 Discussion

Our first research question asked what types of shorthand clinicians use while

placing free-text medication orders. Whereas shorthand for some fields was consistent

(e.g., ‘asa’ for aspirin, ‘mg’ for milligrams) shorthand for fields such as schedule and

number of refills was more varied. It will be important for interactive notes to embrace a

rich set of terminology that goes beyond current ontologies, such as RxNorm, to include

a variety of terms for fields such as schedule, refills, and pickup.

Secondly, we asked what types of functionality clinicians expect from a comput-

erized free-text order entry system. The six recurring functionality requests fell into

two categories: time saving assistance and broader integration with the EHR. Along

the lines of time saving assistance, clinicians wanted to specify their order with as lit-

tle typing or clicking as possible. This principle can be seen in their desire to invoke

the “#med” dialog only once and place multiple orders in a row. It can also be seen

in participants’ desire for ActiveNotes to recognize when a particular dose of a drug

only comes in one form, or to automatically calculate quantity given a prescription’s

schedule and duration. Clinicians also wanted ActiveNotes to be more broadly inte-

grated with the EHR. This included both extending the types of orders it recognized to

include labs, imaging, and consults as well as extending ActiveNotes’ parsing to cover

other types of structured information such as active problems and family history.

Finally, we asked if clinicians saw free-text order entry as a useful addition to

their note editor. Many saw free-text order entry as useful in a number of ways in-

cluding being a potential time saver, less distracting than form-based input, and re-

quiring less navigation compared to current EHRs. These clinicians thought a system

like ActiveNotes could save them from needing to enter information twice, once in a

structured format and then in an unstructured format and may also require less atten-

tion than form-based or drop-down based entry, letting providers focus more on their
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patients if they choose to document during the patient encounter.

There are additional potential technical benefits to having clinicians tag note con-

tent as structured data (e.g., invoking #med when placing a medication order) as com-

pared with post-hoc Natural Language Processing (NLP). First, it enables the parser,

whether it is looking for orders or a problem list, to use a more targeted domain spe-

cific language for recognizing terms. Second, it adds structure to the note by marking

which parts of the note refer to medications, conditions, and so on. This tagging could

assist with later NLP or the development of richer note interactions related to targeted

search, filtering, or highlighting of specific content.

Looking towards future designs, free-text entry of structured information was

not as familiar an interaction paradigm for our participants as menu-driven interfaces.

One participant did not grasp that ActiveNotes would let him document and place or-

ders at the same time. Instead, he wrote each order in the note twice, first with fairly

standard shorthand (e.g. po, #30) while “documenting” and then with less standard

shorthand when “ordering” (e.g. Dispense: 30 ). Beyond developing a robust interac-

tive note, it will take time before some clinicians are comfortable with a new paradigm.

It will also take further iteration to investigate how best to make the features of

free-text entry discoverable and provide adequate feedback to users about the results

of their actions. What keys users press to complete an order, how they select an auto-

completed phrase, and how the system shows that it recognizes part of the order all

need to be carefully designed to fit clinicians’ expectations.

5.7 Conclusion

This study takes a step towards a vision of developing an interactive clinical note

that unify entry and access of patient information with the execution of treatment plans.

We tested one critical feature of such a note, free-text order entry, and found that (i) clin-
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icians use a variety of shorthand when placing free-text medication orders, particularly

when specifying schedule, pickup location, and number of refills, (ii) clinicians want to

specify a minimum number of fields and rely on default or auto-populated values to

fill in routine information, and (iii) clinicians see free-text order entry as a useful addi-

tion to their progress notes with the potential to save time and ensure orders are not

overlooked.

While ActiveNotes is too rough to be deployed in a live EHR, its free-text or-

der entry approach was validated by representative end-users. By considering the note

as the central element of the EHR and incorporating interactions and operations that

typically span multiple parts of EHRs, we have an opportunity to transform documen-

tation from being a complicated and time-consuming clerical task to a more natural

interaction with the patient data.

The results of this study also have implications for other domains of data-driven

work by demonstrating that computational notebooks can combine documentation and

action on data without requiring use of a general-purpose programming language. In-

stead, interfaces can use domain-specific languages to help users specify data, perform

actions, or analyze data in the same document used to explain their thought process.

These domain specific languages will need to be carefully crafted for each use-case and

perhaps even tailored to specific individuals. Designers will need to grapple with how

precise to make the languages. Should users have only one way to invoke a command,

or is the domain and list of possible actions limited enough that multiple synonymous

textual commands will be recognized? Or might non-programmers be better served by

using interactive drop-downs or menus to specify commands rather than text?

ActiveNotes is a rather limited example of a domain-specific computational note-

books for non-programmers. It primarily uses a domain-specific markup language to

enable clinicians to specify medication orders with free text that is human readable and

can be embedded within a clinical note. Future interfaces will need to explore aspects
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of domain-specific computational notebooks beyond how users invoke commands or

specify data including how to plot data within a notebook, how to make possible ac-

tions discoverable, and how to provide feedback about the status of pending actions

or data analysis steps. While future systems could mimic current computational note-

books, they do not have to. For example Wilcox et al.’s clinical notebook provided

an exploratory side-panel where information related to selected text in the note could

be rendered and then manually copied into the note [105]. In their system, if the text

‘ABP’ was highlighted in a note, the side panel would plot the patient’s arterial blood

pressure readings for the last few days with a line graph that could be copied into the

main note. This paradigm of separating the data-driven working space from the final

notebook deserves further exploration.

Future computational notebooks also need not rely on textual interactions with

an underlying domain-specific language. Menu and form-based interactions could be

used to select, analyze, and act on data in ways that can still be embedded within a

textual narrative. However there is an elegance in mixing textual commands with ex-

planatory text that allows a tight coupling of commentary and action.

5.8 Synthesis

This chapter presents presents an exploratory study of how clinicians might use

free-text order entry to place medication orders from within a clinical progress note.

The contributions of this chapter are:

1. Evidence that clinicians can place and find it useful to place free-text medication

orders within a clinical note

2. Theoretical perspective that computational notebooks can support a broader range

of data-driven activities by leveraging domain-specific languages
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3. A prototype clinical note editor, ActiveNotes, built in collaboration with the co-

authors on the following paper

This chapter, in part, includes portions of material as it appears in Validating free-

text order entry for a note-centric EHR by Adam Rule, Steven Rick, Michael Chiu, Phillip

Rios, Shazia Ashfaq, Alan Calvitti, Wesley Chan, Nadir Weibel, and Zia Agha published

in proceedings of the 2015 annual symposium of the American Medical Informatics

Association. The dissertation author was the primary author of this paper.
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6 Conclusion

This chapter revisits the contributions of this dissertation, explores their impli-

cations, and highlights directions for future research. It suggests the tension be-

tween exploration and explanation is fundamental to data analysis but that with

careful design, computational notebooks have potential to reduce this tension and

support a range of data-driven activities, even in domains where general-purpose

programming is not the primary means of interacting with data.

Data analysis is increasingly vital to the work of many individuals and orga-

nizations. Yet, tracking and sharing analytical steps, reasoning, and results remains a

challenge, making it difficult to review, resume, replicate, or build on existing analyses.

The recent rise of computational notebooks — interactive documents combining code,

visualizations, and text in a single file — has been hailed as a sea-change in data analy-

sis, ushering in a new era of openness and reproducibility, particularly in the sciences.

But there has been little evaluation of how computational notebooks are being used,

the benefits they provide, or how they might be improved. This dissertation leverages

the rising popularity of computational notebooks as a unique opportunity to study the

challenges of performing, documenting, and sharing data analyses. It characterizes

how computational notebooks are currently addressing these challenges, and how they

might be designed to do so more effectively.
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6.1 Contributions

This dissertation has four types of contribution: empirical results, theoretical

perspectives, prototype systems, and an open dataset (Figure 1.3).

CHAPTER 3 presented three studies characterizing the use of computational narra-

tive in computational notebooks. Through them I find that many notebooks lack a basic

prerequisite for computational narrative: a single word of explanatory text. Even those

notebooks that had explanatory text were mostly loose collections of notes and scripts

without a coherent structure. And even in notebooks supplementing academic publi-

cations only about a third used explanatory text to discuss analytical reasoning or in-

terpret results. Instead, most used explanatory text to simply label steps of the analysis.

Speaking to analysts revealed that this lack of annotation stems from the tendency for

exploratory analyses to produce messy notebooks that seem personal and are tedious

to clean. Together these findings support a theory that the tension between exploration

and explanation makes it difficult to track and share data analyses. In addition to these

empirical findings and theoretical perspective, with the help of the UC San Diego Li-

brary I released all data from the first study, including over a million computational

notebooks, online for others to study (https://doi.org/10.6075/J0JW8C39).

In CHAPTER 4 I built on these findings by exploring how computational note-

books might be redesigned to encourage clearer communication of complex data anal-

yses, in particular by including more explanatory text and explicit organization. I de-

signed and developed Janus, a Jupyter Notebook extension that enabled analysts to

add history and hierarchy to their notebooks. Through two studies I demonstrated that

hierarchy in particular enables analysts to flexibly navigate and organize their note-

books in ways that support both the ongoing analysis and later communication. These

findings support the theoretical perspective that flexible organization and navigation

of code, visualizations, and text can help reduce the tension between exploration and
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explanation by providing a lightweight means to tailor notebooks to the task at hand.

In CHAPTER 5 I further explored how the the paradigm of computational note-

books might support data-driven work in a domain where general-purpose program-

ming in not the primary means of interacting with data. With a team of collaborators

I helped design and test ActiveNotes, a prototype clinical note editor that enables clin-

icians to place medication orders within free-text notes. This work provided both em-

pirical results about how clinicians might use a free-text order entry, and the theoretical

perspective that notebooks might leverage domain-specific languages to support data-

driven work in domains outside traditional data analysis.

6.2 Implications

These findings have implications both for the design of current computational

notebooks as well as a broader class of interfaces supporting data-driven work. They

also have implications for open science and policies meant to encourage transparency

in data analysis. This dissertation demonstrates that while computational notebooks

allow analysts to craft rich computational narratives, significant barriers still prevent

them from doing so. If interactive media, social practices, and policy are to encourage

clearer communication of everyday analyses, they need to incentivise, ease, or routinize

the process of turning messy exploratory code and results into compelling descriptions

of analyses.

6.2.1 Technical Interventions

This encouragement could take the form of notebooks extensions like Janus (CHAPTER

4) that help analysts annotate and organize their notebooks in-the-moment. For exam-

ple, notebooks could provide linters that detect computational or narrative “debt” and

guide users through adding more informative explanations or refactoring their code.
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These aids might be as subtle as a “computational spell-check” that underlines code

or explanations that might be improved. Alternatively, notebooks might change their

default new cell type to be text rather than code [75], encouraging analysts to articulate

their next step before trying to implement it in code. Except in educational contexts

where more explicit scaffolding may be required, it is likely these subtler interventions

that will be most successful as they are less likely to derail data exploration.

6.2.2 Social Interventions

However, interventions need not be technical. The most impactful change might

come from individual labs establishing new norms for how analyses are documented

and shared. As one interviewee from the third study in CHAPTER 3 noted, many of

his colleagues seemed “put-off” when he presented results from a notebook during lab

meeting, feeling that he did not take any time to prepare. What if labs expected weekly

presentations from notebooks and encouraged researchers to spend time cleaning them

rather than assembling slide decks?

More likely there will need to be a broader movement toward recognizing and

incentivizing the work that goes into clearly presenting data analyses. Methods of mea-

suring academic output will need to be revised to track not just the number of papers

citing an analysis, but also the number of projects reusing code or data from that analy-

sis. Academic journals will need to adopt new forms of publication that elevate datasets

and computational notebooks to first class-citizens on their websites rather than simply

supplemental material for the curious. Companies will need to go beyond establishing

guidelines [72, 23] to providing stronger incentives such as bonuses for those who take

the time to address narrative and technical debt in their analytical records.
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6.2.3 Wider Use of Notebooks

This research hints at the variety of notebook users and uses. Whereas some ana-

lysts see notebooks primarily as an experimental playground for code, some managers

see them mainly as a vehicle for sharing polished results. Some users have extensive

programming experience while others just know how to tweak a few parameters in an

existing notebook.

Computational notebooks could do more to support these varied uses by pre-

senting different views to different users and making it easier to manually, automati-

cally, or semi-automatically construct these views. For example, notebooks could use

execution histories and program slicing to help analysts decide which portions of the

notebook they need to view at any one time to accomplish a particular task. They could

ease the process of turning a hard-coded analytical step into a flexible one that en-

courages exploration by allowing readers to vary parameters using interactive widgets

rather than code.

Beyond their current form, there is potential for notebooks to support data-

driven work in domains where writing code is not the primary means of interacting

with data. Outside of healthcare (CHAPTER 5), lawyers may benefit from being able to

query, analyze, and annotate large collections of legal documents within a single note-

book. Law enforcement or government employees may similarly benefit from being

able to sift through and annotate crime or civic data. Supply chain managers could ben-

efit from compiling interactive reports tracking their explorations of alternative product

sourcing schemes. Over time computational notebooks might attain the status of a core

computational medium like spreadsheets or word processing documents that are used

by children and elders, car mechanics and scientists for a variety of data-driven activi-

ties. However, it is likely that a one-notebook-fits-all approach will not work, but that

notebooks will need to provide facilities specific to each domain and skill-set, even if

they share an underlying computational infrastructure.
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6.2.4 Beyond Notebooks

This dissertation also has implications for the design of a broader class of current

and future interfaces that support data analysis. These include current data analysis

tools such as Tableau and Excel or more experimental systems such as Many Eyes or

sense.us. Each might benefit from incentivizing, easing, or routinizing the explanation

of data analyses through facilities that embed explanatory text alongside data transfor-

mation and visualization.

While powerful, the linear structure of notebooks limits how they can be used to

explore data and present results. More could be done to embed computation and anno-

tation in form factors such as slide decks and 2-D graphics that afford different ways of

presenting analyses. This dissertation suggests that whatever the medium, there must

be an immediate benefit to any organization or annotation activity, particularly when

those using the medium are not professional storytellers and journalists. These popu-

lations have been the focus of prior work on creative narrative visualizations [85], but

have different incentives and goals than the everyday analyst.

6.2.5 Education

This work also has implications for education. As one interviewee in CHAPTER

3 noted, when starting her chemistry and biology labs as an undergraduate she was

trained in a specific, opinionated way of organizing her notebooks. Her paper note-

books did not constrain her to use them in this way, but social practice did. Currently

there is little of this formal training for using computational notebooks beyond work-

shops like those provided by Software Carpentry and Data Carpentry [107]. Under-

graduate and graduate education should focus on helping students learn to annotate,

update, and revise their analyses in ways that they and others can understand. In this

way analytical education should look more like writing education.
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6.3 Future Work

6.3.1 Characterizing Data Analysis

Future work could better characterize how data analyses are performed in com-

putational notebooks. Janus supports detailed tracking of every edit made to a compu-

tational notebook and could be used in longitudinal studies to examine how notebooks

evolve over time. For example, Figure 6.1 shows a visualization of one notebook’s evo-

lution in the style of History Flow [100] generated with notebook revision data from

Janus. Visualizations like this reveal when analysts add commentary to their notebook,

when they get stuck debugging a particular cell, and when they merge or delete cells to

clean their notebooks. Other tracking software could bolster this form of study by track-

ing interactions with programs and websites outside the notebook. Such data could

help us better understand the tools and practices analysts employ in everyday analyses

that are not apparent in the final state of a notebook or interviews [29, 50]. Other studies

of current use could compare how notebooks are used in different domains of practice

across broad domains such as enterprise, education, and academic research, or smaller

ones such as comparing use of notebooks in different academic disciplines.

Figure 6.1: Example visualization of how one notebook evolved over time using data
collected with Janus. Each column is a subsequent version of the same notebook, each
square is one cell of the notebook with the topmost cell being the first cell in the note-
book, and gaps between columns represent moments where more than 15 minutes
elapsed between notebook edits.
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6.3.2 Redesigning Computational Notebooks

Other work could continue to explore how to redesign notebooks to encourage

and enable users to write more compelling narratives and be more willing to share their

notebooks. One approach would be to compare and systematically test features from

the growing array of computational notebooks on the market (e.g., Jupyter Notebook,

R Notebooks, Mathematica, SageMath, Google Collaboratory, Mozilla Iodide). Some

include extensive history tools, some have rich variable inspectors, and many take dif-

ferent approaches to hiding particular cells in an effort to support creation of “presen-

tation” notebooks. Which of these features are most effective in supporting analysis or

later communications, and how are they currently being used in practice?

Another approach would be to continue incrementing the design of notebooks

such as Jupyter Notebook and Jupyter Lab by building novel extensions to explicitly en-

courage annotation and organization. As was the case with this dissertation these tools

could aim to do so by encouraging flexible organization and navigation in-the-moment.

However, there is also fertile ground for developing tools that more explicitly encour-

age best practices either during the analysis or post-hoc during a dedicated notebook

cleaning phase. For example, imagine students in an introductory data analysis course

using a version of Jupyter Notebook with a built-in linter that identified and coached

them through eliminating technical and narrative debt. This could include identifying

poorly named variables, duplicate code, or results without an explanation.

6.3.3 Computational Notebooks for Non-Programmers

Research could also explore developing notebooks for domains such as health-

care, government, and engineering where a number of practitioners do not program.

Here research could focus on the development of domain specific languages [37], to

support interactions such as those used in ActiveNotes or Tableau that enable people
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to analyze data without using a general-purpose programming language. Fast et al.’s

Iris conversational agent [20] is a promising step in this direction, enabling people to

analyze data through chat with a data analysis agent. One can imagine the develop-

ment of different agents for different types of analysis; one that is expert in analyzing

financial transactions, another with crime data, but that all keep a record of the steps

and reasoning involved. These notebooks do not necessarily need to follow the same

linear-collection-of-cells paradigm employed by current notebooks, but could experi-

ment with different ways of embedding computation in narrative text. More research

will be needed to develop the interactions and domain specific languages appropriate

for each domain. Of particular importance is how to enable non-programmers in each

domain to develop the language and interactions appropriate for their field, just as data

analysts who program currently develop libraries to aid their kind of analyses.

6.3.4 Reading and Reuse of Computational Notebooks

This dissertation has focused on how analysts use computational notebooks to

generate computational narratives but future research should also explore how compu-

tational narratives are consumed, particularly by those with little or no programming

experience. Managers and non-technical colleagues are often the primary audience of

data analyses, so how might notebooks better support their needs? Which displays

work best for comprehension? How might notebooks be designed to encourage au-

thors to organize their notebooks in these ways?

Future research could also explore how to make analyses in computational note-

books reusable at scale. For example, in announcing the first Public Library of Science

(PLoS) journal in 2003, the journal’s editors claimed that [7]:

Freeing the information in the scientific literature from the fixed sequence

of pages and the arbitrary boundaries drawn by journals or publishers
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— the electronic vestiges of paper publication — opens up myriad new

possibilities for navigating, integrating, mining, annotating, and mapping

connections in the high-dimensional space of scientific knowledge.

How might computational notebooks leverage their interactivity and computabil-

ity to support support such “navigating, integrating, ‘mining’, annotating, and map-

ping” in ways that are “far more useful than the electronic equivalent of millions of

individual articles in rows of journals on library shelves” [7]?

6.3.5 Other Barriers to Sharing Data Analyses

Finally there are a host of barriers to reproducibility and open science that this

research did not address but that will still have a substantial impact on the future of

computational notebooks. These include technical challenges such as providing appro-

priate access to data as well as supporting interoperability, dependency declaration,

and containerization so analyses can be rerun on any computer.

More challenging will be navigating the myriad social issues surrounding shar-

ing of data analyses. For example, what are the ethical implications of tracking and

sharing more of the messy process of data analysis? Clinicians, for example, are al-

ready careful what they document about patient care to defend against legal action.

How might an expectation of greater sharing of analyses actually encourage less shar-

ing of a process that is necessarily messy and can lead to wrong conclusions at times?

And how might greater sharing of data be allowed without loss of privacy when

human data is involved [18]? Computational notebooks are most useful when they

are interactive and users have access to the data underlying the analysis so they can

tweak, re-run, and reuse portions of it. Yet, as more and more data is shared, there

is greater chance of re-identifying individuals by combining deidentified records [91].

Explanations of analyses are not likely to be shared if the underlying data cannot.
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6.4 Final Thoughts

This dissertation has characterized one of the core challenges of data analysis:

managing the tension between data exploration and process explanation to generate

insights that are open to inspection, reproducible, and sound. It has also explored how

redesigning computational notebooks might reduce this tension. My hope is that it has

highlighted a way forward that helps make widespread use and sharing of computa-

tional narratives less of a far off dream and more of a present reality.
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Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, and Sylvain Corlay. Jupyter notebooks-a publishing format for repro-
ducible computational workflows. In ELPUB, pages 87–90, 2016.

[54] Donald Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984.

[55] Robert Kosara and Jock Mackinlay. Storytelling: The next step for visualization.
Computer, 46(5):44–50, 2013.

[56] J Richard Landis and Gary Koch. The measurement of observer agreement for
categorical data. biometrics, pages 159–174, 1977.

[57] Christopher Le Dantec, Mariam Asad, Aditi Misra, and Kari Watkins. Planning
with crowdsourced data: rhetoric and representation in transportation planning.
In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work
& Social Computing, pages 1717–1727. ACM, 2015.

[58] Jintae Lee and Kum-Yew Lai. What’s in design rationale? Human-Computer Inter-
action, 6(3):251–280, 1991.

[59] Timothy Lethbridge, Janice Singer, and Andrew Forward. How software engi-
neers use documentation: the state of the practice. IEEE Software, 20(6):35–39,
November 2003.

[60] Ian Li, Anind Dey, and Jodi Forlizzi. A stage-based model of personal informatics
systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 557–566. ACM, 2010.

105



[61] Chunyuan Liao, Franois Guimbretire, Ken Hinckley, and Jim Hollan. Papiercraft:
A gesture-based command system for interactive paper. ACM Transactions on
Computer-Human Interaction, 14(4):1–27, January 2008.

[62] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs,
Charles Roxburgh, and Angela Byers. Big data: The next frontier for innovation,
competition, and productivity. 2011.

[63] Paul McBurney and Collin McMillan. Automatic documentation generation via
source code summarization of method context. In Proceedings of the 22nd Interna-
tional Conference on Program Comprehension, pages 279–290. ACM, 2014.

[64] Peter Brian Medawar. Induction and intuition in scientific thought, volume 22. Rout-
ledge, 2013.

[65] Thomas Moran and John Carroll. Design rationale: Concepts, techniques, and use. L.
Erlbaum Associates Inc., 1996.

[66] Emerson Murphy-Hill, Chris Parnin, and Andrew Black. How we refactor, and
how we know it. IEEE Transactions on Software Engineering, 38(1):5–18, 2012.

[67] Nature. Announcement: Transparency upgrade
for nature journals. https://www.nature.com/news/
announcement-transparency-upgrade-for-nature-journals-1.21627, 2017.

[68] Observable. Observable. https://beta.observablehq.com/, 2018. [Online; ac-
cessed 9-May-2018].

[69] City of Chicago. City of chicago data portal. https://data.cityofchicago.org/,
2018. [Online; accessed 9-May-2018].

[70] City of New York. Nyc open data. https://opendata.cityofnewyork.us/, 2018.
[Online; accessed 9-May-2018].

[71] Peter Parente. Estimate of public jupyter notebooks on github. http://nbviewer.
jupyter.org/github/parente/nbestimate/blob/master/estimate.ipynb, 2018.
[Online; accessed 9-May-2018].

[72] Hilary Parker. Opinionated analysis development. PeerJ PrePrints, 2017.

[73] Thomas Payne, Sarah Corley, Theresa Cullen, Tejal Gandhi, Linda Harring-
ton, Gilad Kuperman, John Mattison, David McCallie, Clement McDonald,
Tierney William Tang, Paul, Charlotte Weaver, Charlene Weir, and Michael
Zaroukian. Report of the amia ehr-2020 task force on the status and future di-
rection of ehrs. Journal of the American Medical Informatics Association, 22(5):1102–
1110, 2015.

106

https://www.nature.com/news/announcement-transparency-upgrade-for-nature-journals-1.21627
https://www.nature.com/news/announcement-transparency-upgrade-for-nature-journals-1.21627
https://beta.observablehq.com/
https://data.cityofchicago.org/
https://opendata.cityofnewyork.us/
http://nbviewer.jupyter.org/github/parente/nbestimate/blob/master/estimate.ipynb
http://nbviewer.jupyter.org/github/parente/nbestimate/blob/master/estimate.ipynb


[74] Roger Peng. Reproducible research in computational science. Science,
334(6060):1226–1227, 2011.

[75] Fernando Perez. Personal communication. [From conversation on 7-Dec-2017].

[76] Fernando Perez and Brian Granger. Project Jupyter: Computational Narratives
as the Engine of Collaborative Data Science, July 2015.

[77] Morgan Price, Bill Schilit, and Gene Golovchinsky. Xlibris: The active reading
machine. In CHI 98 conference summary on Human factors in computing systems,
pages 22–23. ACM, 1998.
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